Las partes del esparrago

Las partes del esparrago

El esparrago es una planta vivaz perteneciente a la familia Liliaceae, cuyo nombre científico es el de Asparagus officinalis L.

Posee un sistema rizomático subterráneo en forma de plataforma, del que surgen las raíces de la planta. Existen dos tipos de raíces:

Partes del esparrago

Raíces principales, que son cilíndricas y carnosas, y surgen directamente de la plataforma rizomatosa; realizan un importante papel como órganos acumuladores de reservas, principalmente en forma proteínica e hidrocarbonada. Suelen durar varios años, a lo largo de los cuales aumentan su tamaño en longitud y grosor. Anualmente, estas raíces se renuevan siempre en una zona de la plataforma rizomatosa situada en un plano superior al anterior.

Raicillas: Son raíces de calibre más pequeño que surgen a lo largo de las raíces principales, jugando un papel muy importante en la absorción de agua y nutrientes.

Al conjunto formado por la plataforma rizomatosa y las raíces se le conoce, cuando la planta es pequeña, con el nombre de «garra».

El rizoma va creciendo continuamente, llegando a alcanzar un gran tamaño. En la base de esta plataforma rizomatosa aparecen continuamente yemas de las que se originan los tallos del espárrago o «turiones» que constituyen la parte comestible de la planta. En un principio, y mientras se desarrollan bajo tierra, estos turiones son blancos y poseen unas hojas escuamiformes muy pegadas a los propios tallos. Cuando se dejan crecer libremente al exterior, adquieren un color verde, pueden sobrepasar la altura de 1,5 m y desarrollan ramas laterales provistas de hojas muy rudimentarias y escuamiformes, que son en realidad tallos modificados como cladodios, en los que se efectúa de forma intensa la fotosíntesis.

Tallo y helecho de una planta de espárrago, con flores, frutos y semillas
Tallo y helecho de una planta de espárrago, con flores, frutos y semillaselecho de una planta de espárrago, con flores, frutos y semillas

El espárrago es una planta dioica, por lo que existen plantas portadoras de flores masculinas y plantas de flores femeninas.

La infrutescencia es una baya, roja en la maduración, redondeada y dentro de la que existen tres compartimentos en cada uno de los cuales aparecen 1 ó 2 semillas negras de forma triangular. Cuarenta o 50 semillas de espárragos pesan un gramo y su capacidad germinativa oscila entre tres y cinco años. La polinización es cruzada y entomófila.

Fisiología del crecimiento, desarrollo y la producción

Como ha sido indicado, el espárrago es una planta vivaz, en cuyo rizoma se producen mecanismos de formación y acumulación de reservas así como la formación de nuevos órganos.

La planta vegeta siempre y cuando la temperatura esté situada por encima de 10°C, si no existen otras circunstancias restrictivas, como sequía, etc.

Las reservas formadas por su parte aérea son acumuladas en forma de hidratos de carbono y proteínas en las raíces principales, de consistencia carnosa.

Estas reservas acumuladas en un año determinado juegan el papel más importante de todos los que inciden en la emisión de turiones al año siguiente, desde la plataforma rizomática.

La duración de un esparragal es muy grande, citándose casos de haber alcanzado cincuenta años de longevidad. Sin embargo, la duración media de una plantación comercial de espárragos es de unos 10-15 años.

Desde un punto de vista agronómico en un cultivo de espárragos se distinguen las siguientes fases:

—    Fase de formación de «garras»

Que es el período que transcurre entre la siembra y la formación de plantas, con un rizoma, suficientemente desarrollado para que pueda ser plantado con ciertas garantías. Esta fase suele durar entre uno y dos años, como se verá posteriormente.

—    Fase improductiva

Que comienza con la plantación de las «gatras» obtenidas en los semilleros. Esta fase suele durar dos años, a lo largo de los cuales no se cosechan los turiones formados, sino que se dejan que se expansionen vegetativamente, para que se elabore la mayor cantidad posible de sustancias nutritivas que serán almacenadas en las raíces carnosas.

Fase productiva

Se distinguen en ella tres períodos:

  • —    Período de recolección, en el que van siendo cosechados los turiones, antes de que se rematen vegetativamente en ramas y hojas. Suele coincidir con el período primaveral.
  • —    Período libre de vegetación, en el que no se cosechan los turiones, dejando que crezcan y se transformen en tallos con ramas y hojas. En este período se produce la elaboración de las sustancias de reserva que serán acumuladas posteriormente. La floración y fructificación transcurren asimismo en este período.
  • —    Período de reposo vegetativo, propio de las zonas templadas, generalmente acaece entre él otoño y el invierno. Las plantas dejan de crecer, se agostan, quedando finalmente y en su totalidad secos los órganos aéreos de las mismas, que son podados.

La temperatura es un factor importante en el ritmo de crecimiento de los turiones, habiendo constatado algunos autores, como Culpepper y Moon (cita a Moreau et al., 1977), que pasa desde 1,8 cm/día a 13°C, hasta 3 cm/día a 17°C.

El sexo de las plantas de espárragos también influye en la producción de turiones. Así, los pies machos originan una productividad mayor y más precoz que las plantas hembras, pero, sin embargo, el tamaño medio de los turiones producidos por las plantas masculinas es menor que el que producen los pies femeninos (Edmond et al., 1975).

Desde un punto de vista genético, cabe decir que el sexo está regido por un par de alelos, siendo dominante el gen inductor de la masculinidad. Las combinaciones posibles son las siguientes:

  • —    XX da lugar a plantas femeninas.
  • —    XY da lugar a plantas masculinas y ocasionalmente andromonoicas.
  • —    YY da lugar a plantas masculinas.

Lazarte y Garrison (1980) han efectuado un interesante estudio de modificación de la expresión del sexo en espárragos mediante la aplicación de fitohormonas, que en suma es el siguiente:

—    La pulverización a turiones de plantas femeninas (XX) con una solución a base de ácido giberélico (GA3) a la dosis del 5 por 1.000 unida a una solución de PBA (benzol­amino-purina) a la dosis del 1 por 1.000, o simplemente la utilización de ácido giberélico a la dosis del 2 ó 5 por 1.000 inducía el desarrollo de flores estaminadas, aunque androestériles.

—    La aplicación a plantas masculinas de genotipo XY de una solución de 10 ppm de PBA, sola o con glucosa al 5 por 100, inducía la formación de una mayor cantidad de flores hermafroditas, aunque tras la polinización los frutos no poseían semillas.

—    La aplicación a turiones de plantas masculinas del genotipo YY de una solución de 100 ppm de PBA, sola o con glucosa al 5 por 100, hacía desarrollar flores hermafroditas cuyos óvulos desarrollaban bien los intertegumentos y la chalaza, aunque no los sacos embrionarios. Con este mismo tratamiento se observaba una reducción de la longitud de los estambres y un incremento de la androesterilidad.

Benson (1982) ha encontrado en variedades tipo U. C. (Universidad de California) diferencias morfológicas en el sistema aéreo, atribuibles a su propio sexo.

Ciclo de desarrollo y de crecimiento de la planta de espárrago
Ciclo de desarrollo y de crecimiento de la planta de espárrago

Ciclo de desarrollo y de crecimiento de la planta de espárrago en vivero (A), establecimiento de la esparraguera (B) y en primer año de producción (C). S es siembra; G es germinación; B es brotación de turión; Co es cosecha de turiones; Fo es desarrollo del follaje; Fi es floración; Se es senescencia y R es receso invernal

Fisiologia de manzanas y peras

Fisiologia de manzanas y peras

La vida de los frutos, puede dividirse en tres etapas fisiológicas perfectamente diferenciadas:

Crecimiento, tiempo durante el cual, se realiza el desarrollo del fruto.

Maduración, conjunto de cambios que experimentan los frutos, cuando alcanzan su tamaño definitivo y completan su desarrollo.

Senescencia, período en el cual, ya no hay control enzimático de los procesos metabólicos destructivos.

Una vez finalizado el proceso de floración y realizada la fecundación y el cuajado del fruto, se inicia el proceso de su desarrollo, que finalizará, cuando el fruto alcance la madurez o se produzca su recolección.

En este proceso el fruto pasa por varias fases:

1. Multiplicación celular.

Durante las 4-5 primeras semanas de la vida del fruto, se produce una intensa división celular, que permite alcanzar casi el número total de células, que va a tener posteriormente, pero aumentando muy poco su tamaño. La respiración en este período es muy alta, tanto en los frutos de pepita, como en los restantes frutos.

En esta fase, las células todavía poco diferenciadas, pueden intervenir, en la cicatrización de heridas superficiales de los frutos y finaliza esta multiplicación celular, cuando el fruto alcanza el estado fenológico (J), que se corresponde, con un tamaño del fruto entre 15-20 mm de diámetro.

2. Crecimiento o engrosamiento celular.

Una vez finalizada la fase anterior, comienza a acumularse en las células, agua y sustancias hidrocarbonadas, lo cual origina un aumento del volumen y del peso del fruto, hasta que éste alcanza, el tamaño prácticamente definitivo.

En peras y manzanas, a medida que avanza el proceso de maduración, puede observarse la desaparición progresiva del almidón, que por hidrólisis, se transforma en azúcares más o menos complejos.

3. Maduración.

Se inicia, antes de acabarse el crecimiento del fruto, produciéndose una serie de transformaciones bioquímicas, hasta que el fruto alcance sus características organolépticas especificas.

La maduración es un proceso, que requiere energía y en aquellas estructuras deficitarias en ella, no se produce.

4. Senescencia.

Fase en que los procesos bioquímicos de síntesis, dan paso a los destructivos, lo cual conduce al envejecimiento y finalmente, a la muerte de los tejidos que forman los frutos.

1. Factores que condicionan el crecimiento del fruto.

El crecimiento alcanzado por un fruto, es función del número de células producido, en el período de división celular y del volumen alcanzado por éstas, durante los períodos de crecimiento y maduración. Este crecimiento, está íntimamente ligado a:

  • Las condiciones nutricionales.
  • La disponibilidad de agua.
  • Las reservas acumuladas en el fruto.

Ya que, durante este período, los frutos almacenan materias orgánicas y de reserva energética.

Compuestos tan simples, como el CO2 y el agua, se transforman mediante la fotosíntesis en otros complejos, como fructosas y vitaminas. Las sales minerales absorbidas por las raíces y los compuestos orgánicos producto de la fotosíntesis, dan lugar a proteínas, ácidos y aceites.

Una vez recolectada la fruta, ésta continúa viva, pero comienza su período destructivo, que será más o menos larga, en función del tiempo que tarden, en oxidarse sus reservas.

El agua, es el componente fundamental de los frutos. Además, es el vehículo de suministro, de elementos minerales y orgánicos. Por ello, es necesaria la disponibilidad de agua en el suelo, durante el período de crecimiento y maduración de los frutos, si no son satisfechas estas necesidades, se puede provocar la reducción del tamaño y en casos extremos, la deshidratación y arrugado de los frutos.

De los elementos minerales, el componente más importante, para el crecimiento del fruto, es el nitrógeno, mientras que el potasio influye sobre la calidad. La acción de todos los elementos en equilibrio, contribuye a obtener, una buena producción y con la necesaria calidad.

La acumulación de sustancias hidrocarbonadas, en las hojas y el fruto, tiene como consecuencia, el crecimiento de los mismos. Esta alimentación, depende de la superficie foliar disponible y de la intensidad de la fotosíntesis.

De los factores climáticos el condicionante más importante es la temperatura.

2. Procesos fisiológicos del fruto.

2.1 Transpiración.

Proceso, por el cual, el fruto pierde el exceso de agua absorbido por el sistema radicular a través de las lenticelas, quedándose con la necesaria, para la formación de tejidos y para la fotosíntesis. Cuando el fruto está en una cámara, también puede perder. Esta es la causa por la cual, después de un período de conservación, los frutos, pueden salir de la cámara, arrugados y deshidratados, si no se compensan, de forma artificial, esas pérdidas.

2.2 Fotosíntesis.

El fruto, mientras contiene clorofila, (antes del cambio de color) puede sintetizar hidratos de carbono, a partir, del aire y del agua, según el siguiente esquema.

Anhídrido carbónico + agua + luz solar → azúcares + oxígeno

2.3 Respiración.

En este proceso, totalmente imprescindible para que el fruto evolucione normalmente, el fruto absorbe oxígeno y desprende anhídrido carbónico y calor, según la siguiente reacción:

C6 H12 O6 (glucosa) + 6 O2 → 6 CO2 + 6 H2O + 643 Kcal.

Este calor de respiración, es parte de la energía liberada (la otra parte de esta energía, la utilizan las células, para consumirla en sus actividades energéticas internas) y es el que es necesario tener en cuenta, para mantener el fruto a la temperatura adecuada durante la frigo-conservación.

Tabla Calor de respiración (según Sradelli).
Calor desprendido en Kcal./Tm/día
0 ºC 5 ºC 10 ºC
Peras 80 – 350 150 – 700 600 – 2000
Manzanas 175 – 225 400 – 600 2200 – 3300

Durante la respiración, tiene lugar una pérdida de sustancias nutritivas, siendo los azúcares los más afectados; así como la emisión de etileno y otras sustancias volátiles. La respiración no se realiza siempre con la misma intensidad, siendo su ritmo, bastante irregular, en el transcurso de la vida de un fruto.

Desde el cuajado, hasta transcurridas unas 4 – 5 semanas, la intensidad respiratoria, que es muy elevada al inicio del período, decrece considerablemente y en forma regular hasta el final de este mismo período (es, propiamente, el período de multiplicación celular).

La intensidad respiratoria IR viene dada por la relación:

IR = M / p x t

Donde M = CO2 desprendido.

p = peso de la muestra.

t = tiempo.

En el período siguiente (de crecimiento celular), aunque en forma lenta, la intensidad respiratoria, sigue decreciendo, estamos en el llamado período pre-climatérico.

En las proximidades de la cosecha, durante la maduración, se produce un aumento brusco de la IR. Este fenómeno, que es conocido con el nombre de “máximo respiratorio” o “crisis climatérica”, es de la máxima importancia; es indicador, del estado de maduración del fruto, la llamada “pre-madurez” o maduración de recolección, (que no es lo mismo, que la maduración de consumo) se sitúa, al inicio del período climatérico, cuando se inicia, el aumento máximo de la IR.

2.4 Fermentación.

Se da, en la fase de envejecimiento del fruto o cuando el fruto, está en una atmósfera baja en oxígeno. Se origina, el desprendimiento de anhídrido carbónico y se produce en el interior, etanol y acetaldehído, entre otros compuestos.

3. Fisiología de la respiración.

La respiración, es una actividad fundamental en todos los seres vivos, necesaria para producir, las reacciones vitales para su desarrollo. Es un proceso metabólico, necesario tanto en el producto recolectado, como en el vegetal vivo. Puede describirse, como la degradación oxidativa de productos complejos, normalmente presentes en las células, como almidón, azúcares y ácidos, a moléculas más sencillas: dióxido de carbono, agua y energía, que serán utilizadas en posteriores reacciones celulares.

La base bioquímica simplificada es:

Hidratos de carbono + oxígeno → dióxido de carbono + vapor de agua + energía

La respiración, puede tener lugar, en presencia de oxígeno (respiración aerobia) o en ausencia de oxígeno (respiración anaerobia o fermentación). La velocidad a la que se produce, la respiración de un producto, constituye un índice, de la actividad metabólica de sus tejidos y una orientación, de su vida comercial.

 

Metabolismo de las frutas y hortalizas

Metabolismo de las frutas y hortalizas.

La vida de las frutas y hortalizas se puede dividir en tres etapas fundamentales:

Crecimiento: es el aumento del volumen de las células hasta que se alcanza el tamaño final del producto.

Maduración: puede iniciarse antes de que termine el crecimiento y se produce el desarrollo del producto, lo que sería una maduración fisiológica. Posteriormente se da una maduración sensorial donde ya se adquieren las características comestibles del producto.

Senescencia: se produce el envejecimiento de las células de los tejidos que lleva a la muerte del producto.

Respiración y actividad respiratoria:

Es la oxidación de los azúcares para obtener anhídrido carbónico, agua y energía. La velocidad con la que respiran da idea del metabolismo del tejido y se puede medir y expresar como ml de CO2 por kilogramo y hora. La velocidad es distinta en los vegetales y está relacionada con la vida comercial del producto. Una actividad respiratoria elevada conlleva a que el tiempo de vida útil del producto sea más corto, lo cual implica un período de almacenamiento menor del producto.

Fenómeno climatérico:

Los vegetales se pueden dividir en dos grupos en función del distinto comportamiento con respecto a la actividad respiratoria. Se habla por tanto de frutos climatéricos y frutos no climatéricos.

Este hecho permite recolectar los productos antes de la maduración y posteriormente se produce la maduración de estos, lo cual posibilita la distribución comercial.

Frutos no climatéricos:

En estos no se produce el pico climatérico. No tienen la capacidad de madurar fuera de la planta por lo que se deben recolectar cuando haya llegado a un punto de maduración óptima.

Frutos climatéricos Frutos no climatéricos
  • Albaricoque
  • Melocotón
  • Manzana
  • Pera
  • Aguacate (solo madura fuera de la planta)
  • Plátano
  • Nectarina
  • Mango
  • Chirimoya
  • Ciruela
  • Sandía
  • Tomate
  • Kivis
  • Higos (según la variedad)
  • Melón (según la variedad)
  • Uva
  • Cereza
  • Fresa
  • Piña
  • Naranja
  • Limón
  • Pomelo
  • Pepino
  • Melón
  • Higo
  • Litchi

 

Hay frutas climatéricas como la manzana con actividad respiratoria muy baja por lo que se almacena muy fácilmente durante mucho tiempo. Otras como la pera, albaricoque o melocotón y tienen actividad respiratoria alta por lo que se estropean antes. También hay frutas no climatéricas como las naranjas por los limones que tienen una baja actividad respiratoria mientras que las fresas tienen una alta actividad respiratoria por lo que son más perecederas.

Producción de etileno:

El etileno es una hormona vegetal que acelera los procesos metabólicos. La producción de etileno puede estar favorecida por los daños mecánicos sobre los tejidos vegetales. Podemos utilizar el etileno para acelerar la maduración en los frutos climatéricos debido a que se ha visto un paralelismo entre el punto climatérico y la producción de etileno en estos frutos. En los frutos no climatéricos la adición de etileno no mejorará la maduración sino que acelerará la senescencia por lo que no nos conviene añadir etileno en estos casos.

Transformaciones químicas de los hidratos de carbono en frutas y hortalizas:

A medida que la maduración avanza, aumenta la proporción de azúcares pequeños, sacarosa, que procede de la hidrólisis del almidón, resultando el producto más dulce hasta llegar a un límite. Las pectinas tienen gran importancia en la maduración provocando los cambios de textura en las frutas.

Control de condiciones post-recolección:

Se intenta alargar la vida útil de los productos disminuyendo la actividad respiratoria. El factor más relevante es la temperatura.

Temperatura: la maduración y el metabolismo que se produce después de la recolección se lleva a cabo por reacciones enzimáticas que van a depender de la temperatura. Se puede expresar matemáticamente la velocidad de las reacciones con respecto a la temperatura por el valor Q10 o coeficiente de temperatura.

Q10= velocidad reacción a una de temperatura/velocidad de reacción a 10° menos.

Por ejemplo, si el producto tiene un valor de Q10 de dos quiere decir que la velocidad de reacción a una cierta temperatura es el doble que la velocidad de reacción a 10 ° centígrados menos.

Efectos adversos provocados por bajas temperaturas.

Las bajas temperaturas se usan para aumentar el período de calidad óptima pero si se llega a temperaturas de congelación (0°) producen los daños, se alterarán las estructuras, en definitiva no conviene congelar. También se puede provocar daños por frío a productos sensibles al frío. Se produce la » lesión del frío » en frutas tropicales como el plátano o el melón. (Ver tabla de condiciones de almacenamiento y vida aproximada en almacén).

La lesión del frío se puede producir por transporte etc.. En las industrias es un problema almacenar distintos productos a la vez ya que cada uno tiene unos requerimientos.

También causara daños la temperatura elevada ya que se inactivan las enzimas del proceso de maduración. En verano hay que recoger la fruta temprano para que no le dé el sol de lleno. Con respecto al almacenamiento de frutas y hortalizas las condiciones son muy exigentes con respecto al diseño de las cámaras. Tenemos que tener medios eficaces para eliminar la temperatura que se genera por el proceso de maduración.

Otro factor a controlar es la humedad.

Durante la maduración se pierde agua de forma natural. La mayor pérdida de agua viene dada por el almacenamiento en lugares con atmósferas con humedades relativas muy bajas.

Para reducir la pérdida de humedad lo que se hace es utilizar humedades relativas elevadas mediante humificadores. Tampoco se debe aumentar en exceso ya que puede condensar en el producto y también puede favorecer el crecimiento de mohos. una humedad relativa del 90% es el adecuado para frutas y alrededor del 98% para hortalizas. También se puede evitar la desecación recubriendo las frutas con ceras (encerado superficial).

Otro factor a controlar es la atmósfera.

Durante la respiración se consume oxígeno y se libera anhídrido carbónico y agua. Disminuyendo la concentración de oxígeno o aumentando la concentración de dióxido de carbono se va a frenar la respiración manteniendo el producto durante más tiempo con calidad óptima. La proporción oxígeno/CO2 es distinta para cada producto por lo que habrá que ver cuales la más adecuada en cada caso.

Composición del aire Gas %
N2 78
O2 21
CO2 0.03
Otros 0.94

Las cámaras deben ser herméticas y deben controlar la variación de los porcentajes de los gases. Los cambios en la cantidad de oxígeno y dióxido de carbono se compensarán con el nitrógeno que no tiene ningún efecto.

También tendremos que controlar el etileno. Es un gas que se va desprendiendo de los productos almacenados. Es una hormona que acelera los procesos metabólicos por lo que hay que eliminarlo con ventilación de la cámara, o bien, también se puede evitar una sustancia química como el permanganato sódico que oxida el etileno. También se puede utilizar el etileno para acelerar el metabolismo en el caso de que interese. En las frutas climatéricas se añade el etileno previo al punto climatérico. En los cítricos se usa para acelerar el paso del verde al naranja.

Otra forma de variar la atmósfera es el almacenamiento hipobárico que no está muy extendido porque requiere equipos que hagan vacío en la cámara los cuales son muy costosos. La atmósfera modificada es la que se modifica de forma natural durante el almacenamiento por el metabolismo de las frutas.

Fisiologia de la respiracion de los frutos citricos

Fisiologia de la respiracion de los frutos citricos.

La respiración, es una actividad fundamental en todos los seres vivos, necesaria para producir las reacciones vitales para su desarrollo. Es un proceso metabólico necesario tanto en el producto recolectado como en el vegetal vivo.

Puede describirse, como la degradación oxidativa de productos complejos, normalmente presentes en las células como almidón, azúcares y ácidos, a moléculas más sencillas: dióxido de carbono, agua y energía que serán utilizadas en posteriores reacciones celulares.

La base bioquímica simplificada es:

Hidratos de carbono + oxígeno → dióxido de carbono + vapor de agua + energía

La respiración, puede tener lugar en presencia de oxígeno (respiración aerobia) o en ausencia de oxígeno (respiración anaerobia o fermentación). La velocidad a la que se produce la respiración de un producto, constituye un índice de la actividad metabólica de sus tejidos y una orientación de su vida comercial.

Según la pauta respiratoria, durante el proceso de maduración, pueden distinguirse dos grandes grupos de frutos: CLIMATÉRICOS y NO CLIMATÉRICOS.

El término climatérico fue definido por Kidd y West (1925) al percibirse un incremento respiratorio acentuado próximo a la maduración de las manzanas.

Frutos Climatéricos

Son aquellos en los que, previamente a la maduración o durante la misma, existe un aumento en la producción endógena de etileno, que provoca un aumento de la respiración (crisis climatérica) y conduce irreversiblemente a la maduración, aunque el fruto esté en el árbol.

La maduración de los frutos climatéricos va acompañada por una serie de cambios rápidos en su composición química:

  • aumento del aroma
  • evolución del color
  • aumento de la permeabilidad de las membranas celulares
  • hidrólisis de polisacáridos
  • la pectinesterasa pasa la propectina a pectina en las paredes celulares
  • etc.

Las aplicaciones exógenas de etileno, a los frutos climatéricos, adelantan la maduración pero no aumentan el climaterio, que en algunos frutos, se refiere más a la producción de CO2 que al consumo de O2.

En este grupo encontramos: manzana, nectarina, plátano, melón, mango, pera, ciruela, kivi, sandía, papaya, melocotón, albaricoque, aguacate, chirimoya y caqui.

Frutos No Climatéricos

Son aquellos, que no presentan crisis climatérica. Los cambios en la composición química son graduales y no van acompañados por aumentos de la respiración o por una intensa producción de etileno. La aplicación exógena de etileno, no altera su maduración, pero sí produce un aumento de la respiración.

La recolección de los frutos no climatéricos, debe realizarse en estado óptimo de consumo determinado por criterios comerciales, puesto que su maduración, no se incrementa una vez separados de la planta madre.

La determinación del momento en el que el fruto alcanza el estado de madurez es muy importante de cara al establecimiento de las épocas de recolección. De aquí, el interés de utilizar un índice, que permita el seguimiento del proceso y se define el «índice respiratorio» como el volumen de CO2, desprendido en la respiración del fruto por unidad de peso fresco y tiempo.

En este grupo encontramos: naranja, cereza, uva, mandarina, fresa, aceituna, limón y pomelo.

Los frutos citricos y su fisiologia

Los frutos citricos y su fisiologia. El fruto de los cítricos es, botánicamente, un hesperidio con una corteza exterior flexible y dividida interiormente en segmentos (gajos). El tamaño del fruto es variable, dependiendo de los factores climáticos, edáficos y culturales, incluso dentro de la misma variedad.

Las formas de los frutos cítricos pueden ser: globosa, achatada, ovoide, piriforme, etc. El número de segmentos es variable y puede conocerse desprendiendo suavemente la “roseta” del pedúnculo y contando los pequeños apéndices situados en el círculo que deja ésta.

El fruto al cortarse de forma transversal nos permite distinguir:

  • – La corteza, compuesta por el flavedo (parte más externa y coloreada) y el albedo (parte más interna y de color blanco).
  • – Los segmentos, que contienen vesículas de zumo y las semillas, en el caso de que las haya. Los segmentos están separados unos de otros por las membranas celulares.
  • – Corazón o eje central.

 “ … La correcta manipulación poscosecha de las frutas y hortalizas precisa tener en cuenta que se están tratando de estructuras vivas. Las frutas y hortalizas no se encuentran vivas sólo cuando están unidas a la planta de procedencia; tras la recolección, continúan estándolo y siguen desarrollando los procesos metabólicos y manteniendo los sistemas fisiológicos, que operaban mientras se hallaban uni-das…».

La vida de un fruto la podemos dividir en 3 etapas fisiológicas fundamentales: el crecimiento, la maduración y la senescencia (o envejecimiento)

  • El crecimiento comprende el aumento del número de células y el posterior alargamiento celular, ambas responsables del tamaño final alcanzado por el fruto.
  • La maduración suele iniciarse antes de que termine la fase de crecimiento e incluye diferentes actividades metabólicas.
  • A la senescencia podemos definirla como una fase en la que los procesos anabólicos (sintéticos) dan paso a los catabólicos (degradativos) conduciendo al envejecimiento y, finalmente, a la muer-te del tejido.

La maduración organoléptica es el proceso por el que los frutos adquieren las características organolépti-cas (color, aroma, sabor, textura, etc.) que los definen como comestibles, proceso que, generalmente comienza durante las etapas finales de la maduración fisiológica (que en general coincide con el momento en que las semillas comienzan a ser viables y los frutos pueden proseguir con la maduración organolépti-ca aún separados de la planta madre) y constituye el comienzo de la senescencia. Durante dicho proceso tienen lugar una serie de cambios físicos, bioquímicos y fisiológicos determinantes de la calidad y vida postcosecha del fruto. Entre los más importantes podemos citar: cambio del color, cambios en la composi-ción de proteínas, carbohidratos y en la producción de aromas; cambios en los ácidos orgánicos y en los polifenoles. Una consideración especial merecen los cambios relacionados a la actividad respiratoria y producción de etileno que consideraremos a continuación, y que permiten distinguir entre frutos climatéri-cos y no climatéricos.

Índice de madurez
El índice de madurez o también llamado ratio es la relación entre el contenido de sólidos solubles y el porcentaje de acidez expresada como ácido cítrico anhidro. Los sólidos solubles se lo determinan por refractometría y es también denominado ºBrix corregidos.
El ratio determinado de esta forma da una idea del estado de madurez que tiene la fruta y depende de cada variedad. Para la naranja valencia cuando el mismo alcanza un ratio de 8, se comienza a comercia-lizar, siendo el óptimo entre 10 – 11. El pomelo tiene un ratio entre 6,5 – 7.0; las mandarinas son las va-riedades que mayor ratio tienen, llegando alcanzar ratios mayores de 20, mientras que los limones, son los de menor ratios, y los valores típicos están comprendidos entre 1.40 – 1.60.

Fisiología del Etileno.
La producción de etileno y la respiración de un fruto son dos variables fisiológicas de su actividad metabó-lica. En ciertos frutos, estas variables presentan valores muy bajos cuando se encuentran inmaduros o en estado verde, pero a medida que maduran, se elevan bruscamente hasta alcanzar un máximo. Este pico se llama máximo climatérico y los frutos que presentan este comportamiento se denominan frutos climatéricos (ej. duraznos, tomates, manzanas, bananas, etc.). Otros frutos, por el contrario, no presentan esta pauta respiratoria, siendo denominados no climatéricos (ej. naranjas, limón, pimiento, etc.). Todos los frutos producen pequeñas cantidades de etileno a lo largo de su desarrollo, sin embargo, durante la maduración organoléptica los frutos climatéricos lo producen en cantidades mucho más elevadas que los no climatéricos. De esta manera, las concentraciones de etileno varían ampliamente en los frutos climatéri-cos, pero no en los frutos no climatéricos en los que apenas se diferencian las tasas reinantes durante el desarrollo y las alcanzadas a lo largo de la maduración organoléptica. La exposición a concentraciones de etileno tan bajas como 0,1-1,0 partes por millón, durante un día, son suficientes para acelerar la plena maduración de los frutos climatéricos; en los no climatéricos el etileno en cambio acelera la actividad res-piratoria, siendo tanto más importante cuanto mayor sea la concentración en la atmósfera; también puede tener acción sobre otros procesos como la destrucción de la clorofila (color verde). Numerosos estudios, han permitido que en la actualidad se conozca bastante bien la síntesis natural del etileno a partir de un aminoácido: la metionina. En estos estudios han sido de vital importancia el descu-brimiento de inhibidores de la síntesis de etileno, algunos de los cuales comienzan a ser utilizados en la agricultura. Mientras que otros compuestos inhiben la acción del etileno, este sería el caso del dióxido de carbono a cuyos efectos benéficos se les saca provecho mediante el uso de tecnología con atmósferas controladas. Otro agente lo constituye el ión Plata (Ag+), aplicado bajo la forma de complejo con el ión tiosulfato, penetra rápidamente en los tejidos y retarda e inhibe los procesos de senescencia, esta técnica es muy usada para prolongar el período de conservación de flores cortadas, pero no se puede usar en alimentos dada la toxicidad de la plata.
En resumen, existen dos tipos de frutos denominados climatéricos y no climatéricos, los primeros incre-mentan su ritmo respiratorio y la producción de etileno después de la cosecha, mientras que en los no climatéricos el ritmo respiratorio va disminuyendo hacia la senescencia que parece ser el patrón que le corresponde a los cítricos

Factores que afectan la producción de etileno.
Los niveles de producción de etileno en cada fruto varían considerablemente en función de varios facto-res, que pasamos a detallar brevemente a continuación:

  1. Especie y Cultivar, tal como se ha comentado la producción de etileno es distinta según se trate de frutos climatéricos (manzana) o no climatéricos (cítricos). Además, dentro de una especie se pueden encontrar diferencias importantes entre los cultivares;
  2. Temperatura, como es conocido, el aumento de la temperatura acelera las reacciones metabólicas, sin embargo, temperaturas superiores a 30 °C dan lugar a una disminución importante de la producción de etileno debido a la desnaturalización de las enzimas involucradas en la síntesis;
  3. Nivel de CO2, este gas se destaca por ser un inhibidor competitivo de la acción del etileno, y también actúa sobre la biosíntesis;
  4. Nivel de O2, bajas tensiones de O2 reducen la producción de etileno;
  5. Etileno ambiental, la exposición de los frutos al etileno ambiental estimula mayor producción de etileno, es el efecto autoestimulador (autocatalítico) que existe notablemente en frutos climatéri-cos. Por otra parte, algunos compuestos poseen una acción similar a la del etileno aunque su efectividad es menos que la de este, entre los más importantes figuran el propileno y el acetileno
  6. Situaciones de estrés, los golpes, cortes, agresiones químicas, bajas temperaturas (en especies sensibles), estrés hídrico, etc. inducen la biosíntesis del etileno. Por otra parte, el desarrollo de hongos y bacterias, a causa de heridas, son fuentes de etileno.
  7. Cambios químicos y físicos durante la maduración y/o senescencia

En general los procesos metabólicos relacionados con el proceso de maduración involucran cambios de-gradativos y de biosíntesis según lo siguiente:

DEGRADATIVOS:

  • Actividad de enzimas hidrolíticas
  • Destrucción de cioroplastos
  • Degradación de clorofila
  • Hidrólisis de almidón
  • Oxidación de sustancias o sustratos
  • Inactivación de compuestos fenológicos
  • Solubilización de pecticinas
  • Ablandamiento de la pared celular
  • Cambios en permeabilidad de membranas

BIOSINTESIS

Mantenimiento de la estructura mitocondrial

  • Formación de carotenoides
  • Interconversión de azúcares
  • Aumento en la actividad del ciclo de los ácidos tricarboxílicos
  • umento en la generación de ATP
  • Formación ciclo de etileno
  • Síntesis de aromas

MÉTODOS DE CONTROL DE LA MADURACIÓN Y SENESCENCIA
En forma general el control de la maduración y senescencia de los frutos puede ser conseguido por dos grandes técnicas:

  • Manejo de la temperatura
  • Modificación de la atmósfera

“ Los frutos climatéricos son aquellos que tienen una vida post cosecha muy corta, pues rápidamente se ablandan y son menos resistentes a los golpes, como el agua-cate y la papaya. Mientras que los frutos no climatéricos son los que tienen una vi-da más larga, ya que las magulladuras les afectan menos, como la naranja ”.