Calidad Postcosecha en cereza

Recomendaciones para Mantener la Calidad Postcosecha.

Indices de Cosecha

El color de la piel y el contenido de sólidos solubles (CSS) son los dos criterios que más se usan para juzgar la madurez de la fruta para la cosecha. La madurez mínima aceptada en California exige que la superficie completa de ala cereza tenga un mínimo de color rojo claro y/o 14 a 16% de sólidos solubles, dependiendo de la variedad. El estado «rojo caoba» se recomienda para la cosecha de las variedades Brooks, Garnet, Ruby, Tulare y King.

Indices de Calidad

Sabor, el cual esta relacionado con el CSS, acidez titulable (AT) y cociente CSS/AT. Ausencia de agrietamientos, picaduras de pájaros, arrugamiento por deshidratación, pudriciones y malformaciones (frutas dobles, «spurs»). Los pedúnculos verdes e hidratados se asocian a menudo con frescura y calidad.

Temperatura Optima

-0.5 ± 0.5°C (31 ± 1°F)

Humedad Relativa Optima

90-95%; la alta humedad es particularmente importante para conservar el color verde de los pedúnculos.

Tasa de Respiración

Temperatura  0°C 5°C 10°C 20°C
mL CO2/kg·h 3 – 5 5 – 9 15 – 17 22 – 28

Para calcular el calor producido multiplique mL CO2/kg h por 440 para obtener Btu/ton/día o por 122 para obtener kcal/ton métrica/día.

Tasa de Producción de Etileno

<1 µ L/kg·h a 20°C

Efectos del Etileno

La respuesta de las cerezas al etileno es mínima. El etileno no acelera la maduración de estas frutas.

Efectos de las Atmósferas Controladas (AC)

La AC reduce la tasa de respiración y , en consecuencia, incrementa la vida postcosecha. Las concentraciones elevadas de CO2 suprimen el desarrollo de pudriciones. La atmósfera modificada que se genera dentro del mismo empaque (Modified Atmosphere Packaging, MAP) ha resultado un éxito. Las atmósferas benéficas generalmente se encuentran dentro de los siguientes intervalos:

3 a 10% O2

10 a 15% CO2

< 1% O2 puede producir depresiones en la piel o picado (pitting, consulte el apartado de fisiopatías) y sabores desagradables.

> 30% CO2 puede producir pardeamiento de la piel y sabores desagradables.

El aroma de la fruta puede reducirse después de algunas semanas de almacenamiento en AC, dando lugar a frutas de buena calidad visual pero pobre calidad sensorial.

 

Elizabeth J. Mitcham, Carlos H. Crisosto y Adel A. Kader
Department of Pomology, University of California, Davis, CA 95616
Traducido por Clara Pelayo
Depto. Biotecnología. CBS. Universidad Autónoma Metropolitana-Iztapalapa
Consejo Nacional de Ciencia y Tecnología. México, D.F

Fecha de recoleccion manzana y pera Etileno

Fecha de recoleccion manzana y pera Etileno

El etileno induce y acelera, el conjunto de procesos de maduración y senescencia de las frutas, produciendo unos cambios en el metabolismo, que conducen a la síntesis de nuevos enzimas, responsables, de las modificaciones asociadas a la maduración, como:

  • Reblandecimiento de las paredes celulares.
  • Desaparición de la clorofila.
  • Reducción de la acidez.
  • Desarrollo del sabor y los aromas.

En frutos como las peras y manzanas, el etileno estimula su propia producción. Esta síntesis auto-catalítica, confiere al fruto, una autonomía de maduración, después de la recolección, siempre y cuando, el fruto no se recolecte demasiado prematuramente.

Este gas, se reproduce de forma acelerada por el fruto, cuando el fruto entra en la fase climatérica, y una vez iniciada la síntesis autocatalítica, no se puede evitar que el etileno, se acumule en las logias carpelares (cavidad de las semillas), a medida que avanza la maduración del fruto.

La síntesis de etileno por los frutos, en cantidades significativas, en el momento de la recolección, reduce su capacidad de conservación y la eficacia del frío normal y la de la atmósfera controlada.

La recolección debe situarse, antes de que se inicie la pausa climatérica, en el momento, en que el fruto adquiere su autonomía de maduración, pero antes de que comience, el proceso de envejecimiento.

La medida del contenido de etileno interno, de muestras de frutos seleccionados a intervalos regulares, permite detectar en una plantación, el inicio de la fase climatérica.

El test se realiza sobre 10 frutos representativos del estado de la partida, se extrae por el ojo del fruto (cavidad calicina) entre 0,5 – 1 mm3 de gas de la cavidad interna y se inyecta en un cromatógrafo de gases. Para manzana Golden, Dilley en 1985 propuso una tabla para ayudar a la recolección del fruto.

Nº de frutos Etileno (ppm.)  Conservación
10 frutos de 10 < 0,1 Retrasar la recolección, para aumentar el color, el calibre y la calidad.
Manzana no adecuada para la recolección
03 frutos de 10 0,1 – 0,5 Manzana idónea para larga conservación en atmósfera controlada
03 frutos de 10 0,5 – 1 Manzana idónea para conservación media en atmósfera controlada
03 frutos de 10 1 – 5 Manzana idónea para conservación corta en atmósfera controlada
03 frutos de 10 5 – 10 Manzana idónea para conservación en frío normal, hasta 4 meses
03 frutos de 10 > 10 Manzana para corto plazo en frío normal, comercialización o transformación industrial inmediata.
Fuente: Ctifl.

Este sistema, necesita unos equipos costosos, que solamente están al alcance de laboratorios especializados.

Otro sistema, propuesto por el mismo autor, basado en la medición del etileno, consiste en, 5-10 días antes de comenzar la crisis climatérica, se seleccionan 10 frutos, entre los más desarrollados y se sitúan, en el interior de recipientes con capacidad de 5-10 litros, que cierren herméticamente, manteniéndolos a temperatura ambiente.

Se realizan medidas regularmente, para saber el número de horas necesarias, para que el nivel de etileno en los recipientes, alcance 0,5 ppm. El número de horas, se multiplica por 0,125, para obtener el número de días entre la toma de muestras y la fecha óptima de recolección.

Por ejemplo: La toma de muestras, se realiza el 15 de septiembre y se coloca en un recipiente. Para que en el interior del recipiente se consiga 0,5 ppm. de etileno son necesarias 64 horas, luego 64 x 0,125 = 8 días. La madurez fisiológica se debe producir 8 días después de la toma de muestras, es decir el 23 de septiembre.

Hay factores que pueden modificar las cantidades de etileno endógeno como:

  • Enfermedades en los frutos.
  • Heridas y magulladuras.
  • El frío.
  • Los bajos contenidos en Ca en el fruto.
  • Elevados contenidos de N.
  • Ataques intensos de araña roja y minadores, etc.

Factores que influyen en el desverdizado de citricos

Desverdizado de citricos

TEMPERATURA

La temperatura, juega un papel importantísimo en todas las reacciones químicas, y todas estas reacciones, tienen una temperatura óptima, a la que se producen a la máxima velocidad. No hay que olvidar que la degradación de la clorofila es una reacción química.

2013-10-21 23-43-55 - CIMG1386La temperatura óptima de degradación de la clorofila es de 28ºC y la síntesis de carotenoides es de 18ºC.

Someter a 28ºC a las variedades de cítricos que nosotros trabajamos, iría en detrimento de la calidad de los frutos, provocando la aparición de sabores extraños y manchas en la piel.

Hay que tener en cuenta, que a 30ºC se paraliza la síntesis de carotenoides y a 40ºC, se paraliza la degradación de la clorofila.

Para reproducir las variaciones térmicas que se dan en el campo, que es de lo que se trata, y conociendo la temperatura óptima para la síntesis de carotenoides, hay que proporcionar a la fruta los saltos térmicos necesarios para la oxidación, de la clorofila.

La práctica racional nos lleva a las siguientes temperaturas:

  • Máxima 20 – 22ºC ± 2ºC
  • Mínima 17 – 18ºC

ya que con estas temperaturas, la inercia de la cámara nos sitúa la temperatura, en la ideal para el desverdizado.

La temperatura máxima, viene dada con un margen de ± 2ºC, para acoplarla a las diferentes variedades. Conviene, no tener excesiva prisa a la hora del desverdizado, nunca se desverdiza mejor, cuanto más alta sea la temperatura, sino todo lo contrario, ya que las temperaturas elevadas, sólo producen problemas, en los frutos que se están desverdizando.

La práctica habitual es hacer tres ciclos completos cada 24 horas, es decir, la fruta cada 8 horas, debe pasar una vez por el máximo y el mínimo de temperatura.

Si la temperatura es insuficiente, el color de la variedad aparece más tarde y con menor calidad.

OXÍGENO

Como consecuencia del proceso de desverdizado, se produce un aumento del metabolismo de los cítricos con la consiguiente:

  • – Pérdida de agua
  • – Consumo de oxigeno
  • – Desprendimiento de CO2
  • – Desprendimiento de sustancias volátiles

El O2, es absolutamente preciso, en todos los procesos oxidativos que se realizan en los frutos; estos procesos son:

  • – Respiración
  • – Síntesis de carotenoides
  • – Degradación de la clorofila

De ahí la necesidad de:

  • – Aireación de la cámara
  • – Separación entre las filas de palets, dentro de la cámara

PRESENCIA DE ETILENO

La función del etileno, es incrementar la permeabilidad de las membranas celulares al oxígeno.

El desverdizado, no es función de la cantidad de etileno que utilicemos, basta la presencia en el aire del mismo, para favorecer la desverdización, ya que es un “catalizador” para la reacción de oxidación de la clorofila.

Las concentraciones de etileno superiores a 10 ppm en el aire de la cámara, producen efectos negativos sobre los frutos:

  • – Aceleración de la respiración
  • – Desecación del cáliz
  • – Ablandamiento excesivo de la piel

La dosificación del etileno, debe hacerse siempre sobre el aire que hay en la cámara, no sobre la capacidad de la misma., y debe situarse entre 1-5 ppm.

HUMEDAD RELATIVA

Es la relación, entre la cantidad de vapor de agua, que tiene el aire, a una temperatura determinada y la que puede tener ese aire, cuando está saturado, a la misma temperatura.

La humedad en el aire ambiente, debe ser tal que nos proporcione, una situación de equilibrio entre la de la superficie del fruto y la del propio aire. Si el fruto está en una atmósfera seca, pierde humedad a través de sus estomas, hasta alcanzar el equilibrio con el aire exterior.

Es necesaria una humedad relativa alta, para que el fruto no pierda, por transpiración, la humedad que necesita para mantener su consistencia y apariencia externa, y porque la humedad relativa alta favorece la formación lignina sobre las pequeñas heridas, reduciendo las posibilidades de instalación de hongos, sobre todo en los frutos verdosos.

Tanto si la humedad es excesivamente alta, como si es demasiado baja, ocasiona una serie de inconvenientes, que describimos a continuación.

Humedad excesivamente alta:

  • – Al bajar la temperatura, se producen, por condensación, gotas de agua sobre la piel, con los consiguientes problemas para el desverdizado, ya que donde hay una gota de agua no hay intercambio gaseoso, luego no hay desverdizado.
  • – Acelera la caída de los cálices.
  • – Aumenta el podrido durante el desverdizado, ya que se trabaja con temperaturas, que son idóneas para el desarrollo de los hongos.

Humedad excesivamente baja:

  • – La falta de humedad relativa, produce el cierre de los estomas del fruto, con lo cual, se ralentiza el intercambio de gases con el exterior, y el fruto se desverdiza más lentamente y peor.
  • – Se pierde, por cesión del fruto al aire ambiente, el agua del flavedo y del albedo, dejando las células de aceite esencial muy marcadas, con lo que cualquier roce puede producir su rotura y la correspondiente mancha marrón (oleocelosis) sobre la piel, especialmente sobre mandarinas.
  • – También pueden producirse roturas de células alrededor del pedúnculo y la subsiguiente aparición de manchas.
  • – Favorece la acción del patógeno Colletotrichum gloeosporioides.

ANHÍDRIDO CARBÓNICO – CO2

Los frutos cítricos, producen CO2 y consumen O2 en sus procesos respiratorios.

El CO2 producido debe mantenerse a unos niveles adecuados, ya que es un antagonista del etileno; todo aquello que favorece el etileno, el CO2 lo retarda o lo anula. La producción de CO2 durante el desverdizado se incrementa en un 150-250%.

Concentraciones de CO2 superiores al 0,1% retrasan el desverdizado, y concentraciones superiores al 1% lo paralizan, y además el exceso de CO2 puede producir quemaduras en la corteza de los cítricos.

Las renovaciones periódicas del aire de la cámara, nos evitarán los problemas que el CO2 pueda producirnos y al mismo tiempo nos aportarán O2 a la misma, ya que en el aire la cantidad de O2 es de un 21% aproximadamente, y la de CO2 de un 0,03%.

RENOVACIÓN DEL AIRE

La necesidad de la renovación de aire en la cámara, es indiscutible considerando que los frutos cítricos en condiciones normales de desverdizado, es decir, con 5 ppm de etileno y temperaturas próximas a los 25ºC, producen 30-40 cm3 de CO2 por kg. de fruta.

El aire debe pasar entre los frutos, con el fin de evitar la acumulación de CO2  entre los mismos. Este aire no debe circular a una velocidad excesiva, ya que para una humedad relativa determinada, aumenta la transpiración y desecación de los frutos.

Debe evitarse la formación de «caminos preferenciales», ya que la aireación se producirá por zonas, no en toda la cámara; de ahí la importancia de la estiba de la fruta.

La ventilación excesiva durante el desverdizado ocasiona:

  • – Pérdida excesiva de humedad en el fruto.
  • – Quemado de las faldillas del cáliz.
  • – Caída masiva de cálices.

La ventilación escasa durante el desverdizado ocasiona:

  • – Desverdizado más rápido en la parte superior de la cámara.
  • – Acumulación de CO2 en las partes más bajas.
  • – Coloración más lenta debido a que hay zonas que se empobrecen de O2.
  • – Acumulación de productos procedentes de la respiración del fruto, con la consiguiente saborización de los mismos, con el tiempo.
  • – Los frutos desverdizados en estas condiciones tienen color amarillo pálido.

No debe olvidarse que, durante la aireación de la cámara, hay que seguir suministrándole humedad.

Fisiologia de la respiracion de los frutos citricos

Fisiologia de la respiracion de los frutos citricos.

La respiración, es una actividad fundamental en todos los seres vivos, necesaria para producir las reacciones vitales para su desarrollo. Es un proceso metabólico necesario tanto en el producto recolectado como en el vegetal vivo.

Puede describirse, como la degradación oxidativa de productos complejos, normalmente presentes en las células como almidón, azúcares y ácidos, a moléculas más sencillas: dióxido de carbono, agua y energía que serán utilizadas en posteriores reacciones celulares.

La base bioquímica simplificada es:

Hidratos de carbono + oxígeno → dióxido de carbono + vapor de agua + energía

La respiración, puede tener lugar en presencia de oxígeno (respiración aerobia) o en ausencia de oxígeno (respiración anaerobia o fermentación). La velocidad a la que se produce la respiración de un producto, constituye un índice de la actividad metabólica de sus tejidos y una orientación de su vida comercial.

Según la pauta respiratoria, durante el proceso de maduración, pueden distinguirse dos grandes grupos de frutos: CLIMATÉRICOS y NO CLIMATÉRICOS.

El término climatérico fue definido por Kidd y West (1925) al percibirse un incremento respiratorio acentuado próximo a la maduración de las manzanas.

Frutos Climatéricos

Son aquellos en los que, previamente a la maduración o durante la misma, existe un aumento en la producción endógena de etileno, que provoca un aumento de la respiración (crisis climatérica) y conduce irreversiblemente a la maduración, aunque el fruto esté en el árbol.

La maduración de los frutos climatéricos va acompañada por una serie de cambios rápidos en su composición química:

  • aumento del aroma
  • evolución del color
  • aumento de la permeabilidad de las membranas celulares
  • hidrólisis de polisacáridos
  • la pectinesterasa pasa la propectina a pectina en las paredes celulares
  • etc.

Las aplicaciones exógenas de etileno, a los frutos climatéricos, adelantan la maduración pero no aumentan el climaterio, que en algunos frutos, se refiere más a la producción de CO2 que al consumo de O2.

En este grupo encontramos: manzana, nectarina, plátano, melón, mango, pera, ciruela, kivi, sandía, papaya, melocotón, albaricoque, aguacate, chirimoya y caqui.

Frutos No Climatéricos

Son aquellos, que no presentan crisis climatérica. Los cambios en la composición química son graduales y no van acompañados por aumentos de la respiración o por una intensa producción de etileno. La aplicación exógena de etileno, no altera su maduración, pero sí produce un aumento de la respiración.

La recolección de los frutos no climatéricos, debe realizarse en estado óptimo de consumo determinado por criterios comerciales, puesto que su maduración, no se incrementa una vez separados de la planta madre.

La determinación del momento en el que el fruto alcanza el estado de madurez es muy importante de cara al establecimiento de las épocas de recolección. De aquí, el interés de utilizar un índice, que permita el seguimiento del proceso y se define el «índice respiratorio» como el volumen de CO2, desprendido en la respiración del fruto por unidad de peso fresco y tiempo.

En este grupo encontramos: naranja, cereza, uva, mandarina, fresa, aceituna, limón y pomelo.