Recubrimientos postcosecha para fruta de hueso

Recubrimientos postcosecha para fruta de hueso

NUEVO RECUBRIMIENTO NATURAL PARA FRUTA DE HUESO

María Bernardita Pérez Gago
Instituto Valenciano de Investigaciones Agrarias-Fundación AGROALIMED.
46113 Moncada, Valencia.

Decco Ibérica Post-cosecha en colaboración con el Centro de Tecnología Poscosecha del Instituto Valenciano de Investigaciones Agrarias (IVIA) ha desarrollado un nuevo recubrimiento natural para fruta de hueso dentro de la línea DeccoNatur. El recubrimiento NATURCOVER reduce la pérdida de peso por deshidratación y la pérdida de firmeza durante toda la vida comercial de la fruta, ofreciendo productos de máxima calidad y frescura.

En general la fruta de hueso, como la ciruela, nectarina, melocotón, es altamente perecedera y presenta una vida poscosecha muy corta. Históricamente, en estos frutos el almacenamiento prolongado no ha sido un requerimiento debido a la rápida comercialización de los mismos. Sin embargo, el potencial de exportación y el deseo de alargar el periodo de comercialización está incrementando el interés por tecnologías que permitan extender la vida poscosecha.

El manejo de la temperatura es la herramienta más efectiva para extender la vida de los productos hortofrutícolas. El almacenamiento de las frutas a su temperatura óptima permite reducir la actividad fisiológica, la pérdida de peso por transpiración y ayuda a controlar el crecimiento de patógenos. En el caso de la fruta de hueso, numerosa bibliografía muestra como temperatura óptima de almacenamiento durante la poscosecha el rango entre (-0,5) – 0 ºC (Crisosto y Mitchel, 2007).

El periodo de almacenamiento a esta temperatura puede variar entre una y cuatro semanas, dependiendo del cultivar (Crisosto y col., 2009). En fruta de hueso, la principal causa de deterioro durante el almacenamiento es debido a la manifestación de daños por frío (degradación interna o ‘internal breakdown’), que se manifiestan con la aparición de pigmentación roja en la pulpa, harinosidad del tejido, acorchado, pardeamiento interno de la pulpa, vitrescencia, pérdida de jugosidad, incapacidad de maduración y pérdida de sabor.

Estos síntomasse desarrollan durante la maduración, tras un período de almacenamiento de la fruta en frío, por lo que usualmente son detectados por el consumidor. La fruta más susceptible a este problema es la que se almacena dentro de un rango de temperaturas de 2,2 a 7,6 °C, que suele ser en muchos casos la temperatura que se alcanza durante el transporte (Crisosto y col., 2009).

El almacenamiento de los frutos en atmósferas controladas y/o modificadas han resultado efectivas reduciendo los daños por frío de los frutos (Crisosto y Mitchell, 2007). Sin embargo, la aplicación de atmósferas controladas es cara por los costos adicionales que ha de soportar el producto en su comercialización. Por otra parte, el uso de plásticos para crear una atmósfera modificada cada día presenta más objeciones debido a la cantidad de residuos que generan y una mala aplicación de los mismos puede también dar lugar a problemas de anaerobiosis en el fruto.

La aplicación de recubrimientos o “encerado” es una práctica habitual para reducir los problemas de deterioro durante el almacenamiento poscosecha de algunas frutas y hortalizas, como cítricos, manzana, pera, melón, aguacate, mango, etc. Con la aplicación de estos recubrimientos o “ceras” se crea una barrera al vapor de agua y al oxígeno, reduciendo así la intensidad respiratoria y la pérdida de peso por deshidratación (Baldwin y col., 1997).

Además, estas “ceras comerciales” aportan brillo a los frutos durante el período de comercialización haciendo el producto más atractivo al consumidor y permiten incorporar fungicidas de síntesis con el objetivo de controlar las enfermedades de poscosecha. Actualmente el tipo de recubrimientos comerciales más empleados industrialmente son “ceras al agua” formuladas con aditivos recogidos en el Real Decreto 142/2002 que consisten en disoluciones/dispersiones de una o más resinas y/o ceras emulsionadas. Estas formulaciones requieren generalmente medios alcalinos para la emulsión de la cera y la disolución de la resina, por lo que está extendido el uso de álcalis como el hidróxido potásico y el amoníaco en su formulación.

Las ceras mayoritariamente empleadas son ceras sintéticas del tipo polietileno oxidado, empleándose en mucha menor medida las ceras como la cera carnaúba y cera de abeja, a pesar de tratarse de ceras naturales reconocidas como seguras o sustancias GRAS (‘generally recognized as safe’) (Palou et al., 2011). Teniendo en cuenta el creciente interés por parte de los consumidores de productos naturales, más sanos, seguros y respetuosos con el medio ambiente, en los últimos años se están desarrollando recubrimientos naturales que eviten el uso de ceras sintéticas y que reduzcan el uso del amoníaco en su formulación.

La aplicación de estos recubrimientos, formulados a partir de sustancias GRAS, como hidrocoloides y ceras naturales, cobran mayor importancia en los frutos que se consumen o pueden consumirse con piel, como la fruta de hueso, hacia los que el consumidor es más sensible.

Los principales componentes utilizados en la formulación de estos recubrimientos son lípidos, proteínas y polisacáridos. Además de estos componentes básicos, se añaden otros aditivos como plastificantes, emulsificantes, surfactantes, conservantes, etc. de uso alimentario que ayudan a mejorar la integridad mecánica, la calidad y seguridad de los alimentos (Krochta, 1997). En frutas y hortalizas, el uso de hidrocoloides (polisacáridos y proteínas) ha estado siempre acompañado de lípidos.

Las ventajas de estos recubrimientos están en la barrera selectiva que ofrecen los hidrocoloides al intercambio de gases y en actuar como matriz para el lípido mejorando la integridad del recubrimiento (Pérez-Gago y col., 2010). En general, en la bibliografía científica se ha descrito que la aplicación de recubrimientos a fruta de hueso tiene un efecto beneficioso en el fruto, principalmente relacionada con una reducción en daños por frío al crear una atmósfera modificada y con una reducción en pérdida de peso. Así, en nectarinas la aplicación de un recubrimiento de gel de Aloe vera redujo la tasa de respiración, la producción de etileno y la pérdida de firmeza y peso durante almacenamiento tanto a 20 ºC como a 1 ºC (Ahmed et al., 2009; Navarro et al., 2011).

En el caso de ciruela, recubrimientos a base de hidroxipropilmetilcelulosa redujeron los daños por frío y extendieron la vida útil a 20 ºC tras un almacenamiento prolongado en frío (Pérez-Gago et al., 2003; Navarro-Tarazaga et al., 2008, 2011). A nivel comercial, Decco Ibérica Post-cosecha ha desarrollado una gama de recubrimientos para frutas dentro de la línea DeccoNatur formulados con aditivos alimentarios autorizados en la Unión Europea, América y Asia, lo que facilita la exportación de las frutas a otros países, ofreciendo productos de máxima calidad y frescura.

Dentro de esta línea, en colaboración con el Centro de Tecnología Poscosecha del IVIA se ha desarrollado un recubrimiento para fruta de hueso (ciruela, melocotón y nectarina), peras y manzanas, que se empezó a comercializar en la pasada campaña con el nombre comercial NATURCOVER. Este recubrimiento reduce la pérdida de peso por deshidratación y la pérdida de firmeza durante toda la vida comercial de la fruta, llegando a alcanzar reducciones de hasta un 30-40% dependiendo del fruto, la variedad y el periodo de almacenamiento. Así por ejemplo, en la tabla 1 se muestra la pérdida de peso y la firmeza de ciruela recubierta y sin recubrir tras 15 días de almacenamiento a 1 ºC más 4 días de almacenamiento a 20 ºC, simulando un periodo de comercialización directa. Al final del almacenamiento, los frutos recubiertos con ‘Naturcover’ presentan un aspecto fresco y turgente, mientras que en los frutos sin recubrir se observa una mayor senescencia (Figuras 1 y 2).

A nivel práctico, la aplicación de ‘Naturcover’ se puede realizar en drencher o por baño, lo cual facilita su aplicación no necesitando ninguna modificación en las líneas de confección, y también permite su aplicación mediante spray y cepillos con un secado posterior.

Tratamientos de invierno en fruta de pepita

Tratamientos de invierno en fruta de pepita

El tratamiento de invierno es recomendable realizarlo en todas las plantaciones de frutales especialmente en las viejas. Tiene gran importancia para controlar o disminuir los ataques posteriores de algunas plagas o enfermedades como: piojo de San José (Quadraspidiotus perniciosus), pulgones (Myzus persicae y otros), abolladura (Taphrina deformans), araña roja (Panonychus ulmi), oídio (Sphaerotheca pannosa, Podosphaera tridactyla).

Polisulfuro de Calcio

Este producto está especialmente recomendado en los programas de protección integrada por su baja toxicidad y autorizado en agricultura ecológica.

Tiene buen efecto contra piojo de San José y, sobre todo oídio. Realizar el tratamiento en estados fenológicos A/B/C (00/01/03) Peral y Manzano. Hay que tener especial cuidado con la maquinaria utilizada, pues puede ser corrosivo con los componentes que contengan cobre (latones, etc.).

Se utilizarán las dosis que recomienda el fabricante. „„

Aceite de  parafina + insecticida + oxicloruro de cobre 50.

Está aconsejado cuando hay problemas de araña roja, anarsia, abolladura, piojo de San José y pulgones. Se realizará inmediatamente antes de la floración, estados fenológicos C/D (03-07/10-55). Peral y Manzano

Insecticidas: fosmet (peral y nogal), clorpirifos (WP, WG) (autorizados en el cultivo), piretroides (autorizados en el cultivo), piriproxifen (excepto albaricoquero y almendro) y fenoxicarb.

Recomendaciones a tener en cuenta

  • Se realizarán los tratamientos después de haber podado.
  • Los tratamientos de invierno actúan por contacto, por lo que hay que mojar bien todas las partes del árbol sin olvidar las ramillas más altas.
  • El tratamiento no se debe realizar en tiempo lluvioso ni en días de riesgo de helada ni viento. La temperatura deberá ser superior a 5 °C.
  • El polisulfuro se utiliza solo, no mezclar con compuestos de cobre ni insecticidas.
  • Deben transcurrir como mínimo 30 días entre un tratamiento de polisulfuro y otro con aceite.
  • Los aceites de parafina son menos eficaces contra insectos, para aumentar la eficacia contra insectos se mezclarán con un insecticida.
  • Los aceites en general tienen baja eficacia contra hongos, deben utilizarse mezclados con cobre o con otro fungicida

Mantenimiento del suelo

En general, se puede afirmar que la técnica que reúne mayor número de ventajas es mantener las entrelíneas o calles con hierba natural o sembrada, a la que se le dan cortes periódicos, y mantener la banda, a lo largo de la fila de los árboles, totalmente limpia a base de herbicidas o labores durante todo el año.
Para evitar que los insectos polinizadores acudan a las flores de las malas hierbas en vez de polinizar las flores de los frutales, se deberá realizar un corte poco antes de la floración
de los frutales. Pasada ésta, sería recomendable segar alternativamente la mitad de la calle para ofrecer refugio a los depredadores de los ácaros y otra fauna útil.

Oidio en frutales pepita

Oidio en frutales pepita Agente Causal: Un hongo, Podosphaera leucotricha

Cultivos afectados: Principalmente al Manzano, con menor intensidad al membrillero y al peral.

Sinónimos: mal blanco, ceniza, oidio.

Síntomas

Únicamente los órganos verdes, brotes, flores y hojas. Se recubren de una capa pulvurulenta blanquecina formada por el micelio y las esporas del hongo.

Los frutos rara vez son atacados.

Yema infectadas presentan retardos en la brotación, hojas más pequeñas.

Los ramos se recubren del polvo blanquecino y los entrenudos son más cortos

Daños

  • Debilitamiento general del frutal. . Menor rendimiento de cosecha debido la muerte de yemas y flores.

Propagación

  • Las conidias del hongo no requieren de la presencia de agua para germinar.
  • Condiciones ambientales: de humedad relativa superior a los 70% y temperaturas comprendidas entro 15-20.

PIOJO DE SAN JOSÉ
Quadraspidiotus perniciosus

Si en los frutos recolectados en la campaña pasada o durante las labores de poda se ha detectado la presencia de esta plaga, debe tratarse con uno de los siguientes productos antes de la floración.

Piojo San Jose

Guia de productos recomendados para perales

Guia de productos recomendados para perales

A continuación se presentan una serie de productos recomendados para la producción de de peral de alta calidad, ordenados por estado fenologico y para las plagas o enfermedades mas corrientes en dichos estados fenologicos.

Productos recomendados en pera

Moteado

  • Caddy 10 Pepite
  • Atemi 10 WG
  • Chorus
  • Stroby
  • Systhane forte
  • Folicur 25 WG
  • Emerald
  • Flint

Monilia

  • Rovral aquaflo
  • Iprodiona 50 SC Massó
  • Iprodiona 50 Dupont
  • Topsin 70 WG
  • Cercobin 45 SC

Stemphylium

  • Stroby
  • Switch

Pulgones

  • Karate king
  • Plenum
  • Confidor 20

Factores de calidad en la recoleccion de frutos del melocotonero

Factores de calidad en la recoleccion de frutos del melocotonero

Si en todos los frutos, es fundamental la recoleccion, para su calidad y conservación, pero los factores de calidad en la recoleccion de frutos del melocotonero son esenciales ya que la gran mayoría de los frutos se consumen en fresco y en un periodo corto de tiempo, aquella pues debe ser extremadamente cuidadosa, ya que cualquier lesión o magulladura puede significar la destrucción de los frutos.

Además sólo los frutos recolectados en el momento adecuado, tienen buenas condiciones organolépticas y de conservación.

No es fácil, en la práctica, determinar el momento de la recoleccion, incluso se utilizan guías de colores para ajustar la madurez de cada variedad.

La fecha de la cosecha, se determina, por los cambios de color en el fondo de la piel, de verde a amarillo. Se han establecido tres grados de madurez.:

  • Madurez mínima
  • Madurez de consumo
  • Madurez en árbol

La madurez, implica una serie de cambios fisiológicos que marcan la pauta, para iniciar la recoleccion y éstos podemos resumirlos en los siguientes puntos.

  • Cambio de color en el fondo de la piel, y la consiguiente desaparición de la clorofila, que da lugar, a la formación de antocianos y carotenos.
  • Firmeza de la pulpa. Se consideran frutos «listos para comer», aquellos que tienen una firmeza de pulpa entre 2-3 libras de presión. Los que tengan menos de 6-8 libras de presión, medidos en la zona lateral del fruto son los más apreciados por el consumidor. La firmeza de la pulpa, se evalúa con un penetrómetro, que tenga un pistón de 8 mm de calibre.
  • Acumulación de azúcares, que se traduce, en un aumento de los sólidos solubles, que son medibles mediante un refractómetro, que los expresa como °Brix.
  • La relación sólidos solubles / acidez, nos da el índice de madurez de los frutos. No se ha establecido un índice de madurez para melocotones, porque son muchas las variedades y las condiciones de cultivo.
  • Emisión y desarrollo de sustancias volátiles, que determinan el aroma de los frutos.

 Con todos estos parámetros se puede llegar a una madurez adecuada, que podemos llamar «madurez de recoleccion», y corresponde a una firmeza de pulpa, en la que la fruta, se puede manipular, sin daños por magullamiento

Variedades de melocotonero y Nectarina

Las variedades de melocotonero y nectarina son muchísimas, os facilito algunas direcciones donde consultar las principales de ellas con sus características.

Colección de variedades de ITGA

  • Alvaro Benito Calvo
  • Enrique Díaz Gómara
  • José Miguel Bozal Yanguas

Variedades de Melocotón y Nectarina tempranas (IVIA)

  • Mª Luisa Badenes Catalá
  • Mariano Lorente Solanas
  • José Martínez Calvo
  • Gerardo Llácer Ill

Nuevas variedades de nectarina de carne blanca

  • Iglesias
  • Carbó
  • Bonany
  • Montserrat

Innovacion varietal en nectarina y melocoton plano o paraguayo

  • Iglesias

 

Mas variedades en función de la dureza de su carne

Algunas variedades de melocotonero de carne dura

  • – Catherina
  • – Vesuvio
  • – Baby gold 5
  • – Baby gold 6
  • – Baby gold 7
  • – Jungerman
  • – Sudanell-2
  • – Baby-gold 9
  • – Corona
  • – Miraflores
  • – Calanda
  • – María Serena
  • – Cherry Red
  • – Roya April
  • – Starcrest
  • – Royal Gold
  • – Spring time
  • – Early May Crest
  • – Spring Crest
  • – Spring lady
  • – Red haven
  • – Red top
  • – Suncrest
  • – Firered
  • – Merril Sudance

 

Variedades de nectarina

  • – Maybelle
  • – Armking
  • – Armking 2
  • – Armking 3
  • – May Grand
  • – Red Diamond
  • – Flavor top
  • – Fantasin
  • – Fairlane

Variedades extratempranas de melocotón y nectarina

La característica general es su poca necesidad de horas-frío, unas 300.

Problemas del meloctón y nectarina:

  • – Florecen muy pronto y les pueden coger las heladas.
  • – Sufren fuertes aclareos.
  • – Las extratempranas no consiguen un gran tamaño. Las variedades, cuanto más tardías, más tamaño.
  • – Zincal-5
  • – Maybelle
  • – Arking
  • – Early diamond
  • – Red diamond
  • – Snow Queen
  • – Early Sungrand

 

Mas variedades en función del color de su carne

Melocoton Rojo

top Elegant Lady
top Merril O’Henry
top Rich Lady
top Rojo de Albesa
top Rome Star
top Royal Glory
top Ruby Rich
top Ryan Sun
top Summer Lady
top Summer Rich
top Tardibelle

 

Melocotón Amarillo

top 58 – GC – 76
top Andross
top Baby Gold
top Calanda
top Carson
top Catherine
top Embolsado
top Jesca
top Placido

 

Melocotón Blanco

top Fidelia
top Gladys

 

Nectarina Amarilla

top Big Bang
top Big Nectared
top Big Top
top Fairlane
top Fantasia
top Gardeta
top Luciana
top Nectagala
top Nectalady
top Nectaprima
top Nectareine
top Nectariane
top Orion
top Red Jim
top Venus

 

Nectarina Blanca

top Caldesi
top Emeraude
top Jade
top Magique
top Nectaperle
top Zephyr

 

Paraguayos

top Flat Pretty
top Sweet Cap
top UFO 3
top UFO 4

 

Enfermedades y plagas del melocotonero

Enfermedades y plagas del melocotonero

ENFERMEDADES

Abolladura (Taphrina deformans)

Descripción:

Aparecen durante la primavera desde que comienza la brotación y desaparecen en verano. Se inicia el ataque con el inicio del movimiento de savia del árbol.

Consisten en el abullonamiento de las hojas, con deformaciones de color verde-blanco y rosa brillante o rojo.

La hoja se vuelve quebradiza y se recubre con polvo blanco al aparecer las ascas del hongo.

Estos síntomas también pueden verse en los tallos de los brotes jóvenes e incluso en los frutos.

Las infecciones primarias en las hojas comienzan cuando aparecen los primeros órganos verdes en las yemas vegetativas terminales de los ramos mixtos y continúan después en el resto de yemas vegetativas.

Las infecciones secundarias se prolongan durante la primavera y cesan por completo con las altas temperaturas.

Daños:

Esta enfermedad puede causar daños muy importantes en melocotonero y nectarina, en menor cuantía en almendro.

Los daños consisten en la caída de las hojas y la deformación de frutos y de brotes.

Por otra parte, las hojas deformadas constituyen un refugio para colonias de pulgones.

Dificultando el normal desarrollo de las plantas.

Medidas preventivas/culturales:

Tratamientos tempranos, en estado fenológico B (yema hinchada).

.

Monilia (Monilia laxa, M. frutigena, M. fructicola)

Descripción:

Es una de las enfermedades más problemáticas de los frutales de hueso.

Afecta principalmente a melocotón y nectarina, pera también a albaricoquero ciruelo y cerezo.

Se suele manifestar en dos épocas: floración y maduración de los frutos. Durante la época de floración la especie que se detecta con más facilidad es Monilia laxa. Al manifiestarse durante la época de maduración y también durante la comercialización crea verdaderos problemas en destino.

El hongo pasa el invierno en chancros de ramas, brotes o bien en frutos del año anterior «momias».

En condiciones favorables se inicia la contaminación sobre flores y brotes en primavera.

En la época de maduración suelen ser atacados los frutos a partir de envero, siendo más sensible cuando más avanzada esta la maduración prolongándose durante el periodo de comercialización.

Daños:

En general mermando la producción y la calidad de esta.

Puede producir defoliación.

Los ataques sobre frutos jóvenes pueden producir caídas prematuras.

La fruta afectada se conserva peor y se pudre muy fácilmente durante el período de comercialización.

Monilia laxa al colonizar ramas da origen a chancros y exudados gomosos sobre las partes vivas.

Medidas preventivas/culturales:

Aquellas encaminadas a reducir el inoculo invernante, como eliminación brotes y frutos afectados.

Podas de verano para aumentar la aireación y penetración de la luz en el centro del árbol.

Evitar heridas durante la recolección.

Evitar desequilibrio nutricionales.

Atentos a las condiciones climáticas, a 25 ºC se necesitan 5 horas de humedad a partir de la inoculación para desarrollar la infección en flores, a 10ºC son necesaria 18 horas.

Oídio (Sphaerotheca pannosa, Podosphaera tridactyla)

Descripción:

Es una de las enfermedades clásicas de los frutales de hueso.

Afecta principalmente a melocotón y nectarina, pera también a albaricoquero ciruelo y cerezo.

Se manifiesta en forma de manchas de polvillo blanco sobre frutos o brotes y hojas.

Al afectar brotes y fruto como resultado el periodo de colonización va desde la caída de pétalos hasta el endurecimiento del hueso, a partir de este momento la sintomatología se detecta principalmente en brotes.

Daños:

Manchas en la fruta, con depreciación comercial.

Con ataques graves produce un debilitamiento general, puede atacar a yemas y frutos recién formados, afectando directamente a la producción.

Medidas preventivas/culturales:

Tratamientos preventivos. En especial con climatología favorable a la enfermedad.

PLAGAS

Ácaros (Panonychus ulmi ,Tetranychus urticae)

Descripción:

Panonychus ulmi:

Las hembras son pequeñas, de unos 0,5 mm de longitud; son de color rojo con unos abultamientos blanquecinos en la parte posterior, que se corresponden con el punto de inserción de las cerdas dorsales.

Los abultamientos son unos órganos que permiten la diferenciación de estas arañas de otras.

Pasa los inviernos en forma de huevo normalmente protegido en hendiduras de la corteza de los árboles y puede tener de 7 a 8 generaciones anuales.

Tetranychus urticae:

Es menos importante en frutales. Es un ácaro muy polífago.

Los adultos miden alrededor de 0,5 mm., extienden una pequeña telaraña sobre y debajo de las hojas.

Tiene una coloración marrón verdosa con dos manchas más oscuras en los laterales, pero cuando se aproxima el invierno, su coloración se aproxima al rojo intenso.

Daños:

El daño que causan las picaduras de esta araña, es muy característico en los brotes y también en las hojas; pierden el brillo, se decoloran y aparecen manchas bronceadas, si el ataque es intenso las hojas y brotes se secan y caen de la planta.

La producción de las plantas se puede ver grandemente afectada debido al debilitamiento y defoliación que produce en las plantas.

Medidas preventivas/culturales:

Orientar las intervenciones a la utilización de m.a. lo más respetuosas posible con los fitoseidos.

Organismos de control biológico:

  • Amblyseius andersonii
  • Neoseius
  • Orius.
  • Aeolothrips intermedius
  • Phytoseiulus persimilis
  • Amblyseius californicus
  • Stethorus punctillum

Lepidópteros (Cydia molesta y Anarsia lineatella)

Descripción:

Huevo ligeramente elíptico. Son depositados en forma aislada sobre hojas, frutos y brotes tiernos.

Larvas pasan por 5 estadios y miden entre 10 y 12 mm de largo.

Adulto con alas anteriores de color gris y posteriores de color pardo grisáceo. Mide alrededor de 6 mm de largo.

De las 5 generaciones que suele presentar en España, la primera suele desarrollarla en brotes y ramillas tiernas y las otras cuatro en ramillas y frutos.

Daños:

Los daños son producidos por las larvas que normalmente en su primera generación se al alimentarse de brotes, los cuales se deshidratan y marchitan.

Las larvas también atacan a los frutos penetrando en él y haciendo unas galerías, lo que provoca una depreciación del fruto.

Medidas preventivas/culturales:

En las ultimas décadas se ha puesto a punto el método de confusión sexual, tanto si se aplica este método como si no lo más importante es establecer sistemas que permitan determinar si la plaga está bajo control o de lo contrario hay que intervenir. Para ello hay que determinar el nivel de plaga mediante trampas de monitoreo y el recuento de brotes o frutos atacados.

Umbral de tolerancia:

Cydia: 15 captura/trampa/ semana; 3% brotes atacados y/o 1 % frutos. (Fuente SSV Lleida)

Mosca de la fruta (Ceratitis capitata)

Descripción:

La mosca de la fruta o del Mediterráneo, es un insecto holometábolo (se refiere al proceso en el cual un insecto pasa en su desarrollo por una metamorfosis completa de cuatro estados: huevo, larva, pupa y adulto) originario de África.

La actividad de Ceratitis capitata aumenta en primavera llegando a máximos de actividad en verano, pudiendo permanecer inactivas las pupas durante el invierno si las condiciones climatológicas no le son favorables.

El ciclo tarda en completarse de 21 a 30 días en condiciones óptimas. Dependiendo de las condiciones climáticas concretas de cada zona y cada año, Ceratitis capitata puede llegar a tener hasta 7 u 8 generaciones anuales.

Daños:

Directos

Daño producido por el efecto de la picadura de la hembra sobre el fruto, para realizar la ovoposición, que es una vía de entrada de hongos y bacterias que descomponen la pulpa; y a las galerías generadas por las larvas durante su alimentación. Todo esto produce una maduración precoz y caída del fruto, y la consiguiente pérdida de cosecha.

Indirectos

Restricción impuesta por otros países a la exportación de fruta con riesgo de haber sido atacada por Ceratitis capitata. Así como al destrío por pudrición en almacén.

Medidas preventivas/culturales:

Utilizar trampas alimenticias y sexuales para el seguimiento de la plaga y determinar el momento de tratamiento.

Eliminar restos de fruta del campo una vez cosechado, intentar bajar nivel poblacional.

Controlar los árboles frutales diseminados, con trampas o tratamientos.

Organismos de control biológico:

  • Pachycreppoideus vindemmiae
  • Spalangia cameroni Perkins
  • Pardosa cribata
  • Pseudophonus rufipes

Piojo de San José (Quadraspidiotus perniciosus)

Descripción:

Presenta un acusado dimorfismo sexual.

Las hembras son siempre ápteras, en los primeros estadios son móviles, después se fijan y en estado ninfal está recubierta de un caparazón grisáceo, que al final del desarrollo puede alcanzar un tamaño de 1,8-2 mm, debajo del cual se encuentra la hembra, de un color amarillo.

Los machos son alados y protegidos por caparazón alargado en su estado ninfal.

Hibernan la mayoría de individuos en estado de ninfa y una pequeña parte en estado de hembra.

Al final del invierno retoma su desarrollo.

La primera generación suele darse entre mitad y finales mayo, la 2ª primera quincena de Agosto y la 3ª segunda de Septiembre.

Daños:

Directos

Se fija sobre la fruta o madera, clava su estilete para succionar al mismo tiempo que inyecta una sustancia toxica creando una aureola roja alrededor de la picada.

Esto y la presencia de caparazones son el principal daño en fruto. Con la consiguiente depreciación comercial.

Indirectos

Disminución vigor, y seca de ramas, en especial en árboles jóvenes ya que los debilita por la succión de savia.

Medidas preventivas/culturales:

Control sobre formas invernantes.

Organismos de control biológico:

  • Prospaltella pernicios
  • Hemisercoptes malus
  • Chilocorus bipostulatus

Pulgones (Myzus persicae, Brachycaudus swchartzi)

Descripción:

El pulgón más importante es Myzus persicae; la hembra adulta áptera: Es de forma generalmente ovalada, mayor longitud que la hembra alada (entre 1.5 y 2.5 mm).

Su cuerpo es de color verde pálido o verde amarillento, con manchas longitudinales oscuras, Tiene antenas largas, claras en su base, pero se oscurecen gradualmente hacia el ápice.

No posee tórax y abdomen separados.

Daños:

Directos

Picadura del estilete.

Disminución vigor.

Enrollamiento de hojas, también causan daños en yemas, flores y frutos.

Dificulta el crecimiento.

Indirectos

Secreción de melaza: negrilla, que dificulta la actividad de la planta.

Trasmisión de virosis.

Medidas preventivas/culturales:

Control sobre huevos de invierno y hembras fundatrices.

Seguimiento plaga «umbral de tratamiento» en caso de reinfestaciones.

Tratar a inicio de ataque, antes enrollamiento de hojas, evitar daños irreversibles.

Calidad en la aplicación, respetar dosis, reparto homogéneo del caldo.

Organismos de control biológico:

  • Adalia bipunctata
  • Coccinella septempunctata
  • Coccinella decempunctata
  • Orius
  • Anthocoris
  • Chrysopa y Chrysoperla
  • Syrphus
  • Scaeva y Episyrphus
  • Aphidoletes
  • Lysiphlebus

Abonado en el cultivo de melocotonero

Abonado en el cultivo de melocotonero

El abonado en el cultivo del melocotonero debe variar en función de la edad de la planta. En plantas jóvenes, debe predominar  el nitrógeno (N) para que su desarrollo sea rápido y vigoroso.

En árboles adultos, la fertilización debe ir dirigida, al aporte de los macro y microelementos necesarios, para una buena fructificación.

Los macroelementos, están compuestos en todos los casos por nitrógeno, fósforo y potasio (N, P, K).

El N, es elemento básico para el crecimiento y la fructificación. Su deficiencia provoca, entre otras cosas, el anticipo de la maduración. Si el contenido de N a nivel foliar está entre 2,6-3% del peso de hojas, el color de los frutos se desarrolla mejor y también se comportan mejor los frutos durante el almacenaje y conservación.

El P, tiene una importancia decisiva a la hora de la diferenciación de yemas (madera o flor).

El K, tiene una función reguladora del metabolismo de los azúcares e influye de una forma importante, en la calidad de los frutos. Su deficiencia origina frutos con poco color.

Entre los microelementos esenciales citaremos: Calcio (Ca), Magnesio (Mg), Hierro (Fe), Zinc (Zn) y Boro (Bo).

Antes de plantar hay que estudiar el suelo para poder efectuar las mejoras que procedan. Análisis de suelo.

Cuidado con la aireación insuficiente.

Cuidado con suelos calizos (pH alcalino). Los síntomas foliares son clorosis férrica. Se controla con quelatos de hierro e incluso inyecciones al tronco.

Por el contrario, en suelos ácidos, puede darse bajos contenidos de Calcio y Magnesio, que hay que corregir con enmiendas calizas y magnésicas respectivamente.

En fruticultura, el melocotonero es el frutal que recibe dosis de nitrógenos más elevadas.

No aplicar abono nitrogenado durante los primeros dos meses de vegetación, ya que apenas causa perturbaciones en la producción, aunque el crecimiento puede verse algo reducido. Siempre que el abonado de verano sea correcto para reconstituir las reservas del árbol.

Si es posible, hacer una enmienda orgánica con estiércol antes de plantar.

– Abono de fondo

Estiércol, 60 toneladas por hectárea.

– Abono de mantenimiento

Estiércol, 40 toneladas por hectárea.

Nitrógeno: 1er. Año, 75 kg/ha (4 aportes); 2º año, 75 kg/ha (4 aportes) y 3er. Año, 100 kg/ha (4 aportes).

Fósforo: 100 kg/ha y año

Potasio: 150 kg/ha y año

Magnesio: 50 kg/ha y cada 2 años (año sí, año no)

Un ejemplo practico

Enero, febrero y marzo:

Hasta floración:

Fósforo en parada invernal hasta 250 g/árbol.

Ác fosfórico o fosfato monoamónico 100 g.

30 g de nitrato potásico.

Desde principio de la floración:

Nitrato potásico 8- 10 g/árbol.

Abril:

Recolección en Mayo:

1 al 20: 100 g Nitrato amónico y 50 g Nitrato potásico por árbol mezclados.

21 a recolección: 8- 10 g Nitrato potásico por árbol y riego.

Resto:

Nitrato potásico: 5 g/ árbol/ riego.

Mezclados

Nitrato cálcico: 8 g / árbol/ riego.

Mayo:

Resto :

5 g de nitrato amónico/ árbol/ riego.

5 g de nitrato potásico/ árbol/ riego.

Recolección en Mayo- Junio:

5-8 g de nitrato potásico/ árbol/ riego, suprimiendo el nitrato amónico.

Junio:

Variedades ya recolectadas o de recolección tardía:

Nitrato amónico 33’5 %: 150- 200 g/árbol/mes.

Fase de maduración: (15- 20 días antes de recolección):

Nitrato potásico: 5- 10 g/árbol/riego.

Julio:

Variedades recolectadas o recolección tardía:

Nitrato amónico: 100- 150 g/ árbol/ mes.

Ácido fosfórico: 30 g/ árbol/ mes.

Recolección Julio:

Nitrato potásico: 5- 10 g/ árbol/ riego 15- 20 días antes de recolección y hasta finalizar

Nitrato amónico:4- 8 g/árbol/ riego después de la recolección.

Ácido fosfórico: 1 g/ árbol/ riego.

Después de la recolección evitar el exceso de vegetación, rebajando si es necesario las dosis de agua y abono anteriores.

Agosto y septiembre:

Variedades sin recolectadas:

Nitrato potásico: 5- 10 g/ árbol/ riego 15- 20 días antes de recolección hasta finalizar.

Ácido fosfórico: 1g/árbol/riego.

Variedades recolectadas:

Nitrato amónico: 70- 80 g/árbol/ mes.

Ácido fosfórico: 1 g/ árbol/ riego.

Octubre:

Nitrato potásico: 80- 100 g/ árbol/ mes.

Ácido fosfórico: 50 g/ árbol/ mes.

Noviembre y diciembre:

Nitrato potásico: 70 g/ árbol/ mes.

Ác fosfórico o fosfato monoamónico: 75 g/ árbol/ mes.

  • Tipo de plantación: Plantación al aire libre.
  • Transplante: Todos los árboles previamente citados han sido comprados en un vivero y posteriormente plantados.
  • Marco de plantación:

Plantación en filas:

Distancia entre filas: 4 metros.

Distancia entre árboles: 3 metros.

  • Riego:

Riego por goteo.

Calendario de riego:

Enero: 150- 200 l/árbol/mes.

Febrero: 250- 350 l/árbol/mes.

Marzo: 350- 400 l/árbol/mes si marco 8- 12 m².

500- 600 l/árbol/mes si marco > 15 m².

Abril: 500- 600 l/árbol/mes si marco 8- 12 m².

750- 900 l/árbol/mes si marco > 15 m².

Mayo: 800-1100 l/árbol/mes si marco 8- 12 m².

1100-1500 l/árbol/mes si marco > 15 m².

Junio: 1300-1600 l/árbol/mes si marco 8-12 m².

1600-2000 l/árbol/mes si marco > 15 m².

Julio: 1500-1900 l/árbol/mes si marco 8-12 m².

1900-2800 l/árbol/mes si marco > 15 m.

Agosto: 1400-1700 l/árbol/mes si marco 8-12.

1700-2800 l/árbol/mes si marco > 15.

Septiembre: 900-1100 l/árbol/mes si marco 8- 12

1100-1300 l/árbol/mes si marco > 15

Octubre: 400- 600 l/árbol/mes si marco 8- 12.

500- 700 l/árbol/mes si marco > 15.

Noviembre:

Riegos de mantenimiento.

Diciembre:

Fertilización: No hay aporte de materia orgánica como tal, sino preparados comerciales de ácido húmico y ácido flúvico.

Cultivo del melocotonero

Cultivo del melocotonero

El cultivo del melocotonero es originario de China, donde se le llamó “el árbol de la vida”, y en concreto, parece proceder de las regiones montañosas del norte de ese país. Desde allí fue exportado a zonas propicias para su cultivo. Pasó luego a Japón y desde Afganistán fue llevado a Persia, donde Alejandro Magno lo descubrió y lo dio a conocer en Grecia (de ahí su nombre latino de Persicum pomum, fruta de Persia). Fueron los romanos los que lo llevaron a Europa, y a su vez los colonos españoles los que lo introdujeron en América.

Tiene una gran cantidad de variedades que se diferencian por la textura de la piel y la consistencia de la pulpa.

El melocotón de piel aterciopelada y carne dura es la pavía, si la carne es blanda y la piel presenta pelillos es un melocotón.

Las nectarinas o bruñones o griñones son melocotones con la piel lisa y hueso adherente en el caso del bruñón y hueso libre en el caso de la nectarina. Sin embargo las variedades americanas están desplazando a las autóctonas y ahora son más frecuentes las «maruja», «jerónimo» o «dixired» de diferentes colores y formas.

El melocotón es una fruta muy perecedera por eso se suele conservar como almíbar, mermelada, confitura, en seco como orejones o para licores. En fresco es como contiene gran cantidad de vitamina A.

Las variedades de melocotonero de fruto comestible son innumerables. Las selecciones y obtenciones de nuevas variedades de esta especie se suceden con gran rapidez.

La nectarina es un tipo de melocotón de piel lisa, no vellosa. Hay numerosas variedades. Requieren un tratamiento similar, aunque prefiere condiciones de desarrollo más cálidas.

Tipos de frutos:

– Melocotonero (Prunus persica)

– Nectarina (Prunus persica nucipersica)

– Paraguayos (Prunus persica platycarpa)

Antes de comentar la recolección y conservación con sus enfermedades y fisiopatías en post-recolección, indicaremos, algunas características del cultivo, que necesariamente tienen influencia en la calidad posterior de los frutos, que es al fin, lo que nos interesa para una buena comercialización de los melocotones.

En todas las épocas ha sido apreciado como fruta de mesa y utilizado en la confección de delicados postres. En la época de Luis XIV, La Quintinie obtuvo espléndidas variedades. El melocotón dio origen a preparaciones muy refinadas: Bourdaloue, cardinal, Condé, en buñuelos, flameado, a la emperatriz, etc…, sin olvidar el melocotón Melba.

En Europa, los principales países productores de melocotones son Italia, Francia y España.

La producción melocotonera de España está localizada en Murcia, Barcelona, Tarragona, Zaragoza y Valencia.

 Produccion fruta de hueso

 

CICLO PRODUCTIVO

La entrada en producción es rápida (2-3 años) pero el melocotonero es un árbol de vida corta.

Hasta 12-15 años es el periodo de máxima productividad, y después, es periodo decreciente. A los 8-10 años se levanta la plantación o se sobre-injerta (injerto de corteza), y así se puede aguantar unos 5-6 años más, ya que tiene raíces viejas.

Donde ha habido un melocotonero no plantar otro. Dejar unos años descansar a la tierra cultivando, por ejemplo, hortalizas.

 

POLINIZACION

Las variedades son autofértiles casi todas. Por tanto, los polinizadores no son  indispensables, aunque favorecen la formación del fruto.

La polinización se lleva a cabo por las abejas.

En climas lluviosos la polinización puede ser caprichosa o pobre. Esto se mejoraría a través de la polinización manual. Consiste en utilizar un pincel pequeño y suave para transferir el polen de una flor a los estigmas de otra.

Cultivado el melocotón a cubierto, en invernaderos, etc., se debe polinizar a mano cuando estén en flor. No rocíes ni humedezcas durante la estación florida, ya que podrías impedir la polinización

NECESIDADES DE CULTIVO:

Entre los factores climáticos, que afectan a los melocotones, la temperatura es el más importante.

Las mínimas térmicas perjudiciales para las yemas se sitúan entorno a 15°C bajo cero.

El melocotonero y, en particular, determinadas variedades, necesitan un periodo invernal bastante intenso, que se denomina «horas de frío».

«Horas de frío» es el tiempo que el árbol está a temperatura inferior a 7°C, que en nuestro caso y según variedades se sitúa entre 700 y 900 horas.

Otro factor importante, es la pluviometría. A pesar de que, desde el punto de vista botánico, el melocotonero es una especie de gran resistencia a la sequía, en gran parte de nuestro país necesita ser regado.

Para lograr buenas producciones y tamaño en los frutos, se necesitan precipitaciones superiores a los 800-900 mm anuales.

La luz, también es un factor importante, a la hora de la fructificación.

Temperatura:

Las temperaturas mínimas invernales que el melocotonero puede soportar sin morir giran en torno a -20ºC, pero a -15ºC en la mayoría de las variedades se producen daños en las yemas de la flor.

Requiere 400-800 horas de frío.

Las heladas tardías pueden afectar a los órganos más sensibles (óvulos, pistilo y semilla).

Humedad:

Sensible a la asfixia radicular; por ello hay que evitar los encharcamientos de agua y asegurar una profundidad de suelo no inferior a 1- 1,5 m.

Luminosidad:

Es una especie ávida de luz y la requiere para conferirle calidad al fruto. Sin embargo el tronco y las ramas sufren con la excesiva insolación, por lo que habrá que encalar o realizar poda adecuada.

Exigencias del suelo:

Las diferentes variedades le permiten cualquier tipo de suelo. Lo ideal son suelos frescos, profundos, de pH moderado y arenosos. En nuestro caso tenemos suelos franco- arcilloso y franco- laguinoso

Sensible al contenido de caliza activa, que no debe ser superior al 2-3%, ya que puede producir clorosis férrica.

 

SUSTRATOS DE CULTIVO

Para dar pleno rendimiento, el melocotonero exige suelos sueltos, profundos, bien drenados y exentos de caliza (pH=6-7).

Si no se usan patrones tolerantes a la caliza, se ponen cloróticos.

No obstante, en la práctica, vegeta en una gama de suelos mucho más amplia.

Ideales son suelos francos. Los suelos ligeros son preferibles para limitar la asfixia radicular.

Mejor siempre suelos profundos aunque el riego por goteo permite las plantaciones en  suelos menos profundos.

Los suelos profundos, fértiles y algo ácidos (pH 6,5) son ideales para cultivar melocotones.

PATRONES

El melocotonero se multiplica por injerto de yema sobre patrón.

Se emplean diversos patrones que permiten el cultivo en suelos de distinto tipo.

Los principales patrones para melocotonero son los francos. Tienen vigor medio y dan buena calidad de fruto. Es el mejor si no hay ningún problema del suelo, ya que como hemos dicho, el melocotonero es sensible a clorosis y a la asfixia radicular.

– Francos (60%)

Comunes, Nemaguard, Nemared, Rubira, Monclar

– Ciruelos (25%)

Resisten la clorosis. Brompson, San Julián (A, 655-2, híbrido), Pollizos (Común, Puebla de Soto, el único que aguanta algo de salinidad en el suelo).

Se usan por su resistencia a la caliza, a la salinidad y porque no son tan sensibles a Nematodos como los híbridos de melocotonero x almendro y los francos.

San Julián: adecuados para suelos asfixiantes.

Brompton: resiste caliza pero es muy sensible a la asfixia radicular.

GF43: muy resistente a la asfixia radicular.

– Híbridos de melocotonero x almendro (2%)

GF677, Adafuel, Hansen-2, Hansen-5, Titán.

Gran resistencia a caliza. Son los mejores para problemas de caliza y para replantar porque dan mucho vigor. El inconveniente es que dan peor calidad de fruto (coloración más pálida y maduración más tardía), aunque son bastante productivos.

No soportan la asfixia radicular.

El GF677 es el más usado.

Hansen 2166 y Hansen 536 tienen su mejor virtud en que son resistentes en parte a Nematodos.

MARCOS DE PLANTACION

Cifras en metros. El primer número es la distancia entre líneas y el segundo, la distancia entre árboles en la misma línea. Ejemplo: 5×4 son 5 m entre líneas, la calle.

PODA EN VASO ITALIANO

  • Ciruelo: 5×4
  • Franco: 5×5
  • Híbrido almendro x melocotonero: 6×5

PODA EN PALMETA REGULAR

  • Ciruelo: 5×3
  • Franco: 5×3,5
  • Híbrido almendro x melocotonero: 5×4

PODA EN EPSILON

  • Ciruelo: 6×1,17
  • Franco: 6×2
  • Híbrido almendro x melocotonero: 6×2,5

PODA EN EJE CENTRAL

  • Ciruelo: 4×1,5
  • Franco: 4×2
  • Híbrido almendro x melocotonero: 4×2,5

PODA

Las podas de formación son vasos más o menos modificados, a 3 brazos, y Epsilon. También se utilizan la palmeta, el eje central y el spindelbush.

Los melocotoneros y nectarinas habitualmente se cultivan como árbol, pero los abanicos o palmetas son populares en climas templados, ya que permiten que los frutos reciban el máximo sol a fin de que meduren.

Algunos cultivares (enanos genéticos) son ideales para cultivar en tiestos.

 

ACLAREO DE FRUTOS

Se hace manualmente con el fin de obtener frutos más gordos.

La época normal para el aclaro es 1 mes depués de floración; entre 25 y 35 días después de plena floración de media, porque cada variedad tiene el suyo.

Se entresacan cuando los frutitos tienen el tamaño de avellanas, dejando 1 fruto por racimo; cuando tenga el tamaño de una nuez y algunos frutos pequeños hayan caído de manera natural, entresaque dejando un espaciado de 15-22 cm entre frutos; en clima cálidos a menos distancia.

En fincas productoras, aproximadamente se quita la mitad de los frutos, pero depende.

Se eligen los mejores, los más gordos, se eliminan los dobles. Y ya no caen por competencia.

ANILLADO DE RAMAS

Se utiliza en muchas zonas.

La mejor época es después del aclareo, más o menos 30 días después de la plena floración.

La incisión es de 1 a 5 mm, hay que probar.

Aumenta la precocidad y el tamaño del fruto y su coloración.

Es interesante para las variedades tempranas y como mucho de media estación. Las variedades de estación no los necesita.

PROPAGACION VEGETATIVA

Injerta de yema en T sobre patrones obtenidos de semilla. Algunos cultivadores de melocotones se propagan por estacas de madera suave tomadas en primavera, tratada con un material estimulador de enraizado y colocadas en una cama de propagación con niebla, pero este no es un método comercial.

En zonas con un invierno benigno, algunos cultivares de melocotonero pueden ser iniciados por estacas de madera dura si se les trata con ácido indulbutírico y luego se coloca en vivero a la intemperie en otoño.

El melocotonero se puede injertar sobre:

  • – Melocotonero.
  • – Almendro.
  • – Nectarina.
  • – Ciruelo.
  • – Albaricoquero.
  • – Endrino.

Estados fenologicos de melocotonero

Estados fenologicos de melocotonero

Estado fenológico «A»  – Yema de invierno – Dormant

Estado fenológico «B» – Yema inchada -Swollen wood

Yema inchada melocotonero

Estado fenológico «C» Se ve el caliz – media pulgada verde – half inch green

Se ve el caliz - media pulgada verde - half inch green

Se ve el caliz - media pulgada verde - half inch green

Estado fenológico «D»  – Se ve la corola – first pink

Se ve la corola

Estado fenológico «E»- Se ven los estambres

Estado fenológico «F»- Flor abierta

Estado fenológico «G» – Inicio Caida de petalos – Peter fall

Estado fenológico «H» – Fruto cuajado / Incio de la brotacion

Estado fenológico «I»- Fruto tierno

Estado fenológico «J» – Fruto maduro listo para recolección

 

 

 

Estados fenologicos de melocotonero

En la actualidad se dispone de suficiente información sobre los factores climáticos, edáficos y biológicos involucrados en la duración del ciclo biológico y producción de los cultivos, sin embargo, es bastante frecuente encontrar que para referirse a un momento determinado de su ciclo biológico, esto se haga en términos de una escala de tiempo (Días Después de la Siembra, DDS) relacionándola con las observaciones y prácticas que se llevan a cabo en ellos sin tomar en cuenta el efecto de tales factores sobre la morfología de las plantas.

El ciclo biológico cambia con el genotipo y con los factores del clima, esto quiere decir, que las plantas del mismo genotipo sembradas bajo diferentes condiciones climáticas pueden presentar diferentes estados de desarrollo después de transcurrido el mismo tiempo cronológico. Por lo que cada vez cobra mayor importancia el uso de escalas fenológicas que permiten a la vez, referirse a las observaciones y prácticas de manejo del cultivo en una etapa de desarrollo determinado.

Dado que el producto final de un cultivo, no es sino la consecuencia de un proceso derivado de las actividades agrícolas efectuadas durante todo el ciclo, para los investigadores y productores se hace necesario el conocimiento de la fenología agrícola y la posible duración de las diferentes etapas.

El estudio de los eventos periódicos naturales involucrados en la vida de las plantas se denomina fenología (Volpe, 1992; Villalpando y Ruiz, 1993; Schwartz,1999) palabra que deriva del griego phaino que significa manifestar, y logos tratado. Fournier, 1978 señala que es el estudio de los fenómenos biológicos acomodados a cierto ritmo periódico como la brotación, la maduración de los frutos y otros. Como es natural, estos fenómenos se relacionan con el clima de la localidad en que ocurre; y viceversa, de la fenología se puede sacar secuencias relativas al clima y sobre todo al microclima cuando ni uno, ni otro se conocen debidamente.

Fase: La aparición, transformación o desaparición rápida de los órganos vegetales se llama fase. La emergencia de plantas pequeñas, la brotación de la vid, la floración del manzano son verdaderas fases fenológicas (Torres, 1995).

Etapa: Una etapa fenológica esta delimitada por dos fases sucesivas. Dentro de ciertas etapas se presentan períodos críticos, que son el intervalo breve durante el cual la planta presenta la máxima sensibilidad a determinado elemento, de manera que las oscilaciones en los valores de este fenómeno meteorológico se reflejan en el rendimiento del cultivo; estos periodos críticos se presentan generalmente poco antes o después de las fases, durante dos o tres semanas.

El comienzo y fin de fases y etapas sirven como medio para juzgar la rapidez del desarrollo de las plantas (Torres, 1995).

El término fenología se cree tuvo su primer uso por el botánico belga Charles Morren en 1958, sin embargo, la observación de eventos fenológicos data de varios siglos atrás en la antigua China, quienes desarrollaron calendarios fenológicos, siglos antes de Jesucristo.

Desde hace mas de 200 años algunos agricultores de los E.E.U.U. iniciaron sus registros de las fechas de siembra, emergencia, foliación, caída de hojas, y otros, de muchas especies de plantas. Luego del desarrollo del termómetro se hizo posible correlacionar estas etapas del desarrollo con el clima, especialmente con la temperatura y humedad. En 1918 Andrew Hopkins estableció la ley Bioclimática, ampliada en 1938, donde se recomienda el uso de observaciones fenológicas en lugar de observaciones meteorológicas ya que las primeras integran los efectos del microclima y los factores edáficos en la vida de las plantas, de tal forma que otro instrumento no lo puede hacer.

El propósito de este documento es señalar una metodología para evaluar fenología agrícola en frutales.

2. APLICACIONES.

Existen dos formas de aplicación de las observaciones fenológicas para llegar a ciertas conclusiones (Alcántara,1987):

1. Variables Independientes. El uso de los eventos fenológicos como una herramienta para la investigación microclimática. Los eventos fenológicos representan a sus propios parámetros climáticos, por lo que pueden ser tratados independientes sin consultar el clima local.

  • 1.a. Comparación de eventos diferentes para la misma especie en la misma localidad, diferentes épocas. Ej. Comparación de la fase de brotación, floración para la parchita en Maracay, sembradas en dos fechas diferentes.
  • 1.b. Comparación del mismo evento particular de la misma especie en localidades diferentes. Ej. Comparación de la fase de floración en girasol en diferentes lugares del país.
  • 1.c. Comparación de eventos de especies diferentes ocurriendo al mismo tiempo y en la misma localidad. Ej. Comparación de la fase de floración en cítricos (Citrus spp.), mango (Mangifera indica L.) y aguacate (Persa americana M.) que ocurren en las mismas fechas y en el mismo lugar.
  • 1.d. Comparación de eventos de especies diferentes que ocurren a tiempos diferentes en la misma localidad. Ej. Comparación de la brotación en diferentes cultivos que se presentan en distintas épocas del año en el mismo lugar.

 2. Variable Dependiente. El uso de los eventos fenológicos como integradores de los efectos microclimáticos sobre plantas y animales.

  • 2.a. El uso de eventos biológicos como indicadores de la presencia o ausencia de ciertos factores ambientales.
  • 2.b. Varias combinaciones de datos ambientales y fenológicos para llegar a ciertas conclusiones o hacer predicciones respecto a las respuestas vegetales.

Unidades Térmicas Acumuladas

La temperatura controla la tasa de desarrollo de muchos organismos, que requieren de la acumulación de cierta cantidad de calor para pasar de un estado en su ciclo de vida a otro. La medida de este calor acumulado se conoce como Tiempo Fisiológico, y teóricamente este concepto que involucra la combinación adecuada de grados de temperatura y el tiempo cronológico, es siempre el mismo (WMO,1993)

En términos generales, debajo de una temperatura umbral mínima (Figura 1), determinada genéticamente para cada organismo, el desarrollo no ocurre o es insignificante. Sobre dicha temperatura, el desarrollo se incrementa hasta llegar a un pico o intervalo, donde la velocidad del desarrollo es máxima. A partir de ahí, el desarrollo decrece nuevamente hasta llegar a ser nulo en una temperatura umbral máxima, estos valores se conocen como Temperaturas Cardinales (Ruiz, 1991) En algunos casos pueden ser utilizado segmentos de la curva de desarrollo para fines específicos, como la estimación de temperatura bas.

El crecimiento y desarrollo de las plantas e insectos puede ser caracterizado por el número de días entre eventos observables, tales como floración y madurez de frutos, etc. El número de días entre eventos, sin embargo, puede constituir una mala herramienta porque las tasas de crecimiento varían con las temperaturas. La medición de eventos puede ser mejorada si se expresan las unidades de desarrollo en términos de tiempo fisiológico en lugar de tiempo cronológico, por ejemplo en términos de acumulación de temperatura. Es así como surge el término de días grado o Grados Día (GD) que puede ser definido como días en términos de grado sobre una temperatura umbral (Arnold, 1959). De manera que para completarse una etapa fenológica es necesario la acumulación del Requerimiento Térmico, RT; este se mide en grados-días sobre la temperatura base.

El concepto de GD al aplicarse a observaciones fenológicas ha sido de gran utilidad en la agricultura. Entre las múltiples aplicaciones de este parámetro se encuentran las indicadas por Neild y Seeley (1977) como son:

  • 1. Programación de fechas de siembra o ciclos de cultivo
  • 2. Pronóstico de fechas de cosecha
  • 3. Determinar el desarrollo esperado en diferentes localidades
  • 4. Determinar el desarrollo esperado en diferentes fechas de siembra o inicio del ciclo de cultivo
  • 5. Determinar el desarrollo esperado de diferentes genotipos
  • 6. Pronosticar coeficientes de evapotranspiración de cultivos
  • 7. Pronóstico de plagas y enfermedades

La mayoría de estas aplicaciones se sustentan en modelos de grados día para describir el desarrollo de plantas e insectos, de ahí que el concepto de GD se utilice más bien como Grados Día de Desarrollo (GDD) (Ruiz, 1991). Algunos autores señalan que el éxito de los grados días depende de una relación estrecha entre radiación y temperatura, fotoperíodo y temperatura y de cultivares adaptados a fotoperíodo locales (Hodges y Doraiswamy,1979). En la mayoría de los modelos desarrollados para describir el desarrollo de cultivos y plagas donde se han considerado factores climáticos, los que presentan más aplicación se fundamentan en la temperatura o la interacción de esta con el fotoperíodo y se basan en relaciones no lineales con posibilidad de transformación lineal (Ruiz, 1991).

3. FENOLOGÍA EN LA AGRICULTURA

En el transcurso de la historia, el hombre ha utilizado su conocimiento sobre los eventos fenológicos en la agricultura. La fenología, la cual fue una parte integral de las antiguas prácticas agrícolas, aún mantiene una muy cercana relación con la agricultura moderna a través de sus valiosas contribuciones.

Los eventos comúnmente observados en cultivos agrícolas y hortícolas son: siembra, germinación, emergencia (inicio), floración (primera, completa y última) y cosecha. Los eventos adicionales observados en ciertos cultivos específicos incluyen: presencia de yema, aparición de hojas, maduración de frutos, caída de hojas para varios árboles frutales.

El periodo entre dos distintas fases es llamado Estado Fenológico (Villalpando y Ruiz,1993). La designación de eventos fenológicos significativos varía con el tipo de planta en observación.

Por ejemplo los estados fenológicos del mango pueden identificarse como:

Aparición de hojas nuevas: fecha en que aparecen las primeras hojas de un nuevo ciclo de desarrollo

Floración: momento en que la mitad de la unidad de muestreo presenta las primeras flores

Amarre del fruto: fecha en que la mitad de la unidad de muestreo aparece el fruto incipiente, aún envuelto por vestigios florales

Inicio de desarrollo del fruto: momento en que en la mitad de la unidad de muestreo los frutos alcanzan 2 cm de diámetro

Terminación del desarrollo del fruto: fecha en que en la mitad de la unidad de muestreo se logra el máximo desarrollo del fruto.

Madurez: fecha en que el fruto alcanza la madurez para cosecha

Se debe considerar que un cultivo puede no desarrollar todas sus fases fenológicas (Aparición de nueva hoja, Floración, Inicio de desarrollo del fruto, Fin de desarrollo del fruto y Madurez del fruto), si crece en condiciones climatológicas diferentes a su región de origen (Ruiz, 1991).

Todos estos estados son visualmente detectables. Para estados no visualmente detectables (estados de dormancia), Marcucci (1948) citado por Solórzano (1994), elaboró una serie de estudios fisio-morfológicos de las fases de pre-aparición de yemas y pre-floración en los árboles. Encontró que en este estado de dormancia, las yemas indiferénciales no están completamente en dormancía, y llamó a este periodo «cryptofase».

Azzi (1956) citado por Solórzano (1994), en su estudio en la almendra, señala la existencia de un estado prolongado de latencia entre la presencia de un fruto incipiente y la maduración del fruto.

Otros aspectos que son regularmente observados pueden considerarse como indicadores fenológicos del patrón del crecimiento y desarrollo del cultivo. Para árboles frutales, las fechas de floración y maduración de frutos se aceptan generalmente como indicadores significativos. En el caso de árboles frutales, arbustivos perennes, el período entre la floración y la presencia de un fruto incipiente se ha reconocido durante mucho tiempo como uno de los estados de desarrollo importantes. De manera que el conteo aleatorio de flores (número de flores en pocas ramas seleccionadas), del conteo de frutos (número de frutos de un tamaño específico en las ramas usadas en el conteo de flores) y peso, constituyen indicadores destacados de rendimientos (Villalpando y Ruiz, 1993)

4. METODOLOGÍA PROPUESTA

A continuación se señalan los diferentes formatos a utilizar en el campo para tomar los datos fenológicos de cultivos perennes:

4.1. Código Fases Fases a Observar

Considere las semanas del mes como:

  • 0 Yema hinchada 1: del día 01 al 07
  • 1 Brotes de 10 a 15 cm 2: del día 08 al 15
  • 2 Inflorescencia visible (1 cm) 3: del día 16 al 23
  • 3 Primera flor 4: del día 24 al 31
  • 4 Plena floración (50%)
  • 5 Fruto pequeño (1,5 cm)
  • 6 Maduración (50%)
  • 7 Cosecha
  • R Reposo

La investigación en la fenología puede agruparse en tres categorías de acuerdo a varios aspectos del crecimiento y desarrollo de la planta:

Distribución espacial. Se usa isolíneas para indicar la misma referencia en días respecto a la isófona normal para un año específico. Las isolíneas pueden aplicarse a todos los eventos fenológicos.

Variación temporal. En esta, la secuencia de tiempo de ocurrencia de uno o más eventos fenológicos de una especie particular o de un número de especies se observa para una localidad geográfica fija. La observación de la variación anual en la fecha de floración de una planta específica en una localidad, con relación a la temperatura extrema es un ejemplo de este tipo de investigación. Otro ejemplo es la construcción de un calendario fenológico para un área específica.

Relaciones temporales y espaciales. La distribución en la variación de tiempo, de un simple o varios eventos son investigados en un área geográfica amplia. Un ejemplo es la ley Bioclimática de Hopkins (Alcántara,1987).

4.2. Cambios Estacionales y Calendarios

Un calendario fenológico apropiado puede proporcionar información útil concerniente al ciclo de vida de un grupo de plantas y animales, este tipo de información no la suministra, ni el calendario astronómico, ni el calendario climatológico. El calendario real chino creado por el emperador de la Dinastía Han (500 A.C.) ofrecía las fechas normales para varias prácticas, y además guiaba cualquier desviación de lo normal en base a las observaciones fenológicas anuales. Ha sido utilizado por los agricultores chinos desde hace 2500 años. Para 1949 Schnelle (Alcántara, 1987) construyó un calendario fenológico para áreas de gran altitud para el sur de Alemania tomando una media de 10 años de las fechas iniciales de varios eventos fenológicos, usó un total de 28 plantas nativas, 30 plantas cultivadas y 30 árboles frutales, y obtuvo por ejemplo, que Marzo 4 se designó como la fecha de floración del avellano; Mayo 7 floración de la manzana.

En general un calendario ideal que señala los cambios estacionales y el desarrollo de las plantas requiere observaciones por tiempo prolongado de eventos fenológicas, junto con una medición concisa microambiental (Alcántara,1987). Tales observaciones deben duplicarse para un área geográfica amplia, en consideración a latitud, longitud, altitud y tipo de suelo.

4.3. Técnicas Múltiples en Agrofenología

FRUTICULTURA

Se desarrollan y exponen los aspectos más importantes que condicionan la implantación y desarrollo de cultivos de árboles frutales con éxito. Se tratan aspectos técnicos incluyendo temas dedicados a fertilización, plantación, control de malas hierbas, poda, así como la forma de prevenir, tratar y controlar algunas plagas y enfermedades que puedan presentarse…

Eventos fenológicos y elementos del tiempo atmosférico: debido a que la temperatura y la precipitación son criticas a la respuesta de los cultivos y son partes regulares del reporte meteorológico, estas son dos de los eventos fenológicos. Cuando la temperatura se emplea como una medida del ambiente, la temperatura media y temperatura acumulada son los dos parámetros frecuentemente más utilizados. El gradiente de temperatura vertical, la inversión de temperatura, temperatura del suelo, y las temperaturas extremas también se usan. La temperatura media y la temperatura acumulada son estadísticamente idénticas y promedian la singularidad de los cambios de temperatura afectando el crecimiento vegetal, a menos que se haga uso la media de un periodo corto de temperatura (Alcántara,1987).

Cuando la lluvia se usa como una medida en el estudio de los eventos fenológicos se hace uso de su media mensual, la precipitación extrema, el numero de días lluviosos y eventualmente la frecuencia. Sin embargo, la precipitación por sí misma se estudia independientemente de otros factores ambientales. Más no es un parámetro efectivo como lo son otros factores ambientales (Alcántara,1987).

Formulación empírica: En esta los eventos fenológicos se correlacionan con los factores ambientales por medio de formulación matemática. Es simple, porque uno necesita sólo convertir sus datos en una fórmula dada y determinar los coeficientes. No involucra el desarrollo de los principios de las relaciones funcionales de las leyes físicas y las leyes fisiológicas.

Los establecimientos experimentales a gran escala son conocidos como Jardines Fenológicos Internacionales, estos fueron recomendados por Schnelle y Volkdert (Alcántara,1987) para estudios comparativos internacionales. Ellos sugieren un grupo de plantas genéticamente heterogéneas resistentes, poseyendo relativamente numerosas y distintas fases fenológicas en todas las estaciones, como material aconsejable para observación.

5. CONCLUSIONES

Las principales variables que controlan la fenología de un cultivo son: fecha de siembra, duración del día, temperatura, suministro de humedad, componente genético, y manejo de la planta.

Un cultivo puede no desarrollar todas sus fases fenológicas si crece en condiciones climatologías diferentes a su región de origen.

Debido a su naturaleza interdisciplinaria, las investigaciones fenológicas pueden ser dificultosas debido a la necesidad de categorizar bajo disciplinas tradicionalmente científicas.

Tres áreas que actualmente utilizan la información fenológica son: sensores remotos, cambios climáticos y modelos.

La contribución potencial de la fenología, podría ser el desarrollo de trabajos de observaciones sistemáticas a escala nacional y global en las próximas décadas, constituyendo un conocimiento de la relación atmósfera-biosfera con implicaciones de cambio global (Schwartz, 1999).

6. BIBLIOGRAFÍA

– Arnold, C. Y. 1959. The determination and significance of base temperature in a linear heat unit system. Proc. Amer. Soc. Hort. Sci., 74: 430-445.

– Alcántara, R. A. 1987. Fenología y Cambios Estacionales. Traducción libre de Phenology and Seasonal Changes. Notas de clase para Fenología Agrícola y Agrometeorología, Chapingo, México.

– Fournier, L. y C. Charpantier. 1978. El tamaño de la muestra y la frecuencia de las observaciones en el estudio de las características fenológicas de los árboles tropicales. Cespedesia. Suplemento 2. Vol VII, 25-26.

– Hodges, T. y P.C. Doraiswamy. 1979. Crop phenology literature review for corn, soybean, wheat, barley, sorghum, rice, cotton and sunflower. Agristars Technical Report. Lockheed Electronics Co. Inc. 1830 Nasa Road 1, Houston, Texas 77058.

– Neild, R. y M.W. Seeley. 1977. Applications of growing degree days in field corn production. In: Agrometeorology of the maize crop. WMO N° 481. p. 426-436. Geneva, Swtzerland.

– Solórzano V.1994. Guías fenológicas para cultivos básicos, oleaginosos, sacaríferos, tubérculos y fibras. Universidad Autónoma de Chapingo, Dpto. de Fitotecnia, Fenología Agrícola. p. 162.

– Ruiz, A. 1991. Caracterización Fenológica del Guayabo (Psidium guayava L.). Tesis de Maestría en Ciencias. Colegio de Postgraduados, Montecillo, México. p. 78.

– Torres R., E. 1995. Agrometeorología. Editorial Trillas, S.A. de C. V. México, D.F. p. 154.

– Villalpando, J. y A. Ruiz, 1993. Observaciones Agrometeorológicas y su uso en la agricultura. Editorial Lumusa, México. p. 133.

– Volpe, C. A. 1992. Citrus Phenology. In: Proceedings of the Second International Seminar on Cítrus Physiology, p. 103-122.

– Schwartz, M. D. 1999. Advancing to full bloom: planning phonological research for the 21st century. 42:113-118.

– WMO. 1993. Practical use of agrometeorological data and information for planning and operational activities in agriculture. WMO. Publication N° 60. Geneva.

Mercedes de Azkues

INIA-CENIAP-IIRA-Agroclimatología

INIA de Venezuela

Analisis de Peligros y Puntos Criticos de Control III

Analisis de Peligros y Puntos Criticos de Control  III

La evolución continua de la legislación europea, para las empresas alimentarias (todas las Centrales Hortofrutícolas están consideradas como empresas agroalimentarias) ha dado lugar a la obligación de implantar un sistema de autocontrol de dichas empresas.

La Directiva 93/43 CE y posteriormente el RD 2207/95 sobre productos alimenticios, exigen que el autocontrol se base en la metodología de Análisis de Riesgos y Control de Puntos Críticos (ARCPC).

Vamos a establecer, después de todo lo comentado, un ARCPC para un almacén o central hortofrutícola cualquiera.

1. Identificación de la empresa

2. Diagrama del proceso

3. Análisis general de riesgos

4. Zonas donde establecer un PCC

5. Controles a realizar en áreas donde no haya un PCC

6. Otras acciones y controles

7. Organigrama del personal involucrado en el ARCPC

8. Establecimiento de Planes de Acción

1 IDENTIFICACIÓN DE LA EMPRESA

  • – Nombre de la empresa.
  • – Actividad
  • – Responsable
  • – Datos administrativos
  • – Áreas de aplicación del ARCPC

2 DIAGRAMA DEL PROCESO

3 ANÁLISIS GENERAL DE RIESGOS

AREA 1

– Recepción de fruta de campo

Fruta de campo

Recolección

AREA 2

– Partes o accesorios de la línea de confección en los que los frutos están en contacto con productos químicos

  • Drencher
  • Lavadora
  • Aplicador de fungicida
  • Aplicador de cera
  • Cámaras
  • – Desverdizado
  • – Conservación
  • – Preenfriado

AREA 3

– Resto de componentes de la línea de confección

  • Despaletizador
  • Volcador
  • Previa tría – Preselección
  • Precalibrado
  • Presecado – Secado
  • Mesa de selección
  • Calibrado
  • Empaquetado
  • Palatizado
  • Cintas transportadoras
  • Elevadores
  • Transportadores, etc.

AREA 4

– Otras zonas

  • Descarga – recepción
  • Stocks
  • Zona sucia de las líneas de confección
  • Expedición
  • Almacén general

4 ZONAS DONDE DEBE ESTABLECERSE UN PCC

Todos los apartados de las Áreas 1 y 2 del punto 4.3.

4.1 AREA 1: Recepción de fruta

RIESGOS

a) Contaminación química por la incorrecta aplicación de productos durante el desarrollo de los frutos.

b) Contaminación biológica, física o química por los medios de transporte.

ACCIONES A REALIZAR

a) Control de las partidas de fruta, mediante los cuadernos de campo, donde deben reflejarse todos los tratamientos realizados en vegetación, así como las fechas y dosis de aplicación de cada uno de los productos o sus materias activas.

b) Control para que en el medio de transporte no haya restos de materia orgánica, abonos, olores extraños (si el transporte es cerrado) o cualquier otra materia que pueda ser arrastrada por las cajas de campo.

MEDIDAS PREVENTIVAS

  • – Prohibición del uso de cualquier producto cuya materia activa no esté registrada oficialmente.
  • – Control del agua de uso agrícola.
  • – Elaborar las directrices de cultivo y transporte y darlas a conocer a todos los proveedores.

MEDIDAS CORRECTORAS

  • – Cambio de proveedor ante una falta repetida de calidad o fiabilidad en su producción.
  • – Asignar otro destino a la partida en la que se detecten problemas.

REGISTROS

  • – De incidencias y medidas correctoras.
  • – Análisis de residuos de plaguicidas.
  • – Albarán de entrada de cada partida.

4.2 AREA 1: Recolección de frutos

RIESGOS

a) Contaminación biológica por frutos podridos o con negrilla.

b) Para los propios frutos, si están mal alicatados, rotos, con heridas o defectos externos graves, si están bajos de color, calibre, madurez o contenido en zumo.

ACCIONES A REALIZAR

a) Control de cada uno de los puntos ya indicados, eligiendo varias cajas de cada partida, para realizar un muestreo.

MEDIDAS PREVENTIVAS

  • – Comunicar a los jefes de cuadrilla las medidas de recolección exigidas por la empresa.
  • – Hacer que los cogedores cumplan estas medidas.

MEDIDAS CORRECTORAS

  • – Rechazo de la partida, si llega el caso, en función de cómo se reciba en el almacén.
  • – Eliminación de los frutos que no reúnan las condiciones de calidad.
  • – Informar a los agricultores de las normas de cultivo y transporte adoptadas por la empresa.

REGISTROS

  • – Control de incidencias y medidas correctoras.
  • – Albarán de entrada de cada partida.

4.3 AREA 2: Drencher

RIESGOS

  • a) Contaminación biológica y química producida por el agua.
  • b) Contaminación química por la utilización de productos postcosecha, no autorizados, en mal estado o que por las dosis utilizadas no cumplan su LMR.
  • c) Contaminación biológica de unos frutos a otros, siendo el agua su vehículo, cuando hay frutos podridos en las cajas o bins que pasan por el drencher.

ACCIONES A REALIZAR

  • a) Verificar el estado sanitario del agua.
  • b) Control de la dosificación y calidad de cada uno de los productos postcosecha, así como la autorización de uso, por parte del Ministerio de Agricultura o Sanidad.
  • c) Control de la fruta que llega del campo.

MEDIDAS PREVENTIVAS

  • – Exigir a los proveedores de productos químicos: productos etiquetados y registrados, ficha técnica de cada producto y ficha de seguridad de cada producto.
  • – Verificación de los equipos de medida o control utilizados en la aplicación y dosificación.
  • – Formación del personal dedicado al manejo de productos químicos.
  • – Establecimiento de un Plan para la utilización de productos químicos.

MEDIDAS CORRECTORAS

  • – Inmovilización y análisis de la fruta que no haya seguido, o se sospeche de ello, el Plan de tratamientos químicos.
  • – Cambiar o repasar los equipos de medida o control que estén defectuosos.

REGISTROS

  • – Ficha de registro de todos los productos químicos utilizados en el drencher.
  • – Registro de los tratamientos.
  • – Registro de incidencias y medidas correctoras.
  • – Registro de análisis de residuos.

4.4 AREA 2: Lavadora

RIESGOS

  • a) Contaminación biológica y química por la utilización de aguas que no cumplen la legislación.
  • b) Contaminación química debida a los detergentes y fungicidas utilizados o por sus residuos si los frutos no se lavan bien.
  • c) Contaminación biológica y química, en la bandeja inferior de la lavadora, producida por la materia orgánica, frutos podridos o rotos, así como por la acumulación de detergente y/o fungicida.

ACCIONES A REALIZAR

  • a) Verificar el estado sanitario del agua.
  • b) Comprobar que los detergentes son biodegradables y que éstos y los fungicidas están autorizados para este uso, que las dosis son las correctas y se corresponden con las que indica el fabricante en la etiqueta del producto.
  • c) Control del lavado de los frutos, comprobando que la cantidad de detergente es correcta, el buen funcionamiento de las boquillas de lavado y la presión del agua.
  • d) Limpieza diaria de la bandeja de la lavadora y aclarado con agua.

MEDIDAS PREVENTIVAS

  • – Exigir a los proveedores de productos químicos de lavado estén etiquetados y registrados, ficha técnica de cada producto y ficha de seguridad.
  • – Verificación de los equipos de medida y control.

MEDIDAS CORRECTORAS

  • – Cambiar o reparar los equipos de medida o control, que estén defectuosos.
  • – Volver a pasar por línea aquellos frutos que estén mal lavados o se sospeche que no llevan la dosis correcta de producto químico.

REGISTROS

  • – Ficha de registro de todos los productos químicos utilizados en el lavado.
  • – Registro de incidencias y medidas correctoras.

4.5 AREA 2: Aplicador de fungicida

RIESGOS

a) Contaminación biológica y química producida por el agua que arrastran los frutos o los cepillos del aplicador.

b) Contaminación química por los productos químicos utilizados.

ACCIONES A REALIZAR

a) Verificar el estado sanitario del agua.

b) Control de la dosificación de los productos químicos y de su correcta homologación.

MEDIDAS PREVENTIVAS

  • – Exigir a los proveedores de productos químicos: productos etiquetados y registrados, ficha técnica de cada producto y ficha de seguridad de cada producto.
  • – Verificación de los equipos de medida o control utilizados en la aplicación y dosificación.
  • – Formación del personal dedicado al manejo de productos químicos.
  • – Establecimiento de un Plan para la utilización de productos químicos.

MEDIDAS CORRECTORAS

  • – Verificar que los equipos de aplicación funcionen correctamente.
  • – Ajustar el tratamiento para que aquellos frutos que vayan a cámara tengan las dosis de fungicida establecidas.

REGISTROS

  • – Ficha de registro de todos los productos químicos utilizados en el aplicador.
  • – Registro de los tratamientos.
  • – Registro de incidencias y medidas correctoras.
  • – Registro de análisis de residuos.

4.6 AREA 2: Aplicador de cera

RIESGOS

  • a) Contaminación biológica y química producida por el agua de lavado de los cepillos del aplicador.
  • b) Contaminación química producida por la cera y los fungicidas que lleva incorporados.
  • c) Acumulación o defecto de cera en los frutos.

ACCIONES A REALIZAR

  • a) Control del estado sanitario del agua de acuerdo a la legislación vigente.
  • b) Control de la cantidad de cera que se aplica sobre la fruta.
  • c) Control de las dosis de fungicidas aplicadas a la fruta.
  • d) Vigilar que la fruta lleva la cera necesaria sin defectos ni excesos.

MEDIDAS PREVENTIVAS

  • – Control de etiquetado de todo tipo de ceras.
  • – Control de registro, vigente.
  • – Control de ficha técnica de los productos.
  • – Control de fichas de seguridad.
  • – Verificación de los equipos de medida o control utilizados en la aplicación y dosificación.

MEDIDAS CORRECTORAS

  • – Inmovilización de la fruta que lleve exceso o defecto de cera o se haya roto la película de la misma, para volver a pasar dicha fruta de nuevo por la línea.
  • – Cambiar o reparar aquellos equipos que estén defectuosos: bombas, boquillas, manómetros..

REGISTROS

  • – Ficha de registro de todas las ceras que se utilicen en el almacén.
  • – Ficha de registro de los fungicidas que se aplican con la cera.
  • – Registro de análisis periódicos.
  • – Registro de incidencias y medidas correctoras.

4.7 AREA 2: Cámaras

RIESGOS

  • a) Contaminación biológica y química producida por el agua utilizada en las cámaras (desescarche, humedad relativa, etc.)
  • b) Contaminación química por la utilización de productos químicos no autorizados o por superar éstos las dosis permitidas.
  • c) Contaminación química por residuos de productos químicos utilizados en las desinfecciones.
  • d) Contaminación biológica por residuos de materia orgánica y frutos podridos o «chafados» en las cámaras.

ACCIONES A REALIZAR

  • a) Verificar el estado sanitario del agua.
  • b) Control de los productos químicos a utilizar y de sus dosis.
  • c) Control de la limpieza de las cámaras.

MEDIDAS PREVENTIVAS

  • – Todos los productos deben ir etiquetados, estar registrados y son sus correspondientes fichas técnicas y de seguridad.
  • – Verificación de los equipos de medida y control.
  • – Formación profesional del personal dedicado al manejo de las cámaras.
  • – Controlar la evolución de la fruta en la cámara.
  • – Establecimiento de un Plan exclusivo para las cámaras.

MEDIDAS CORRECTORAS

  • – Modificar los parámetros de temperatura, humedad relativa, CO2, O2, etc. en función de la evolución de la fruta.
  • – Sacar la fruta de la cámara.
  • – Cambiar o reparar los equipos de medida o control que estén defectuosos.

REGISTROS

  • – Ficha de registro de todos los productos químicos utilizados, tanto en desinfección como en el tratamiento de la ficha.
  • – Ficha de control de temperatura, humedad relativa, CO2, O2, ciclos de aireación, C2H4 (en desverdizado).
  • – Registro de incidencias y medidas correctoras.

5 RESTO DE INSTALACIONES

Se pueden considerar como instalaciones, todas aquellas máquinas o elementos por las que circule el producto, los materiales de envase o el producto envasado, desde la recepción del mismo, hasta su expedición.

RIESGOS

Contaminación biológica o química del producto o de los envases producida por deficiencias higiénico-sanitarias en las instalaciones.

ACCIONES A REALIZAR

La empresa debe disponer de un Plan de limpieza y desinfección de las instalaciones con productos autorizados que comprende:

  • – Desmontaje y limpieza completos de la instalación al final de la campaña o antes de iniciarse la siguiente.
  • – Limpieza y desinfección periódica durante la campaña (de algunas máquinas diaria).
  • – Control eficaz de plagas.
  • – Control de las zonas de almacenaje.
  • – Recursos materiales y humanos necesarios para realizar este Plan.

CONTROL

El responsable del almacén debiera ser la persona encargada de que los puntos anteriores se lleven a efecto por parte del técnico de mantenimiento de la Central.

REGISTROS

Para la correcta realización del Plan deberán producirse «Fichas» de:

  • – Plan de limpieza y desinfección.
  • – Plan de lucha contra plagas.
  • – Incidencias y medidas correctoras.
  • – Mantenimiento higiénico-sanitario.

6 OTRAS ZONAS

Este apartado incluye:

  • – Zona de descarga y drencher.
  • – Zona de stocks.
  • – Zona sucia de las líneas de confección o preselección (esta zona comprende desde el despaletizador hasta la mesa de tría).
  • – Zona de expedición.
  • – Almacén en general.

6.1 Zona de descarga y drencher

La zona de descarga de los frutos, donde normalmente se halla situado el drencher, es una de las más importantes en cuanto a los problemas de contaminación química y biológica en los almacenes.

La acumulación de residuos, arrastrados desde el campo, la materia orgánica (tierra, hojas, ramitas, restos de flores, etc.) junto con el agua que acompaña los tratamientos en drencher, originan una situación ideal, junto a frutos rotos y/o podridos, para todo tipo de problemas.

Es una zona que, como mínimo, debe limpiarse diariamente y, con agua a presión, arrastrar al desagüe de la zona todos los restos de materia orgánica que permanezcan en el suelo después de la limpieza.

Al agua de limpieza final, debe añadirse un desinfectante, sobre todo al acabar la jornada de trabajo.

6.2 Zona de stocks

En esta zona suelen acumularse los palets o bins con frutos, que pueden venir directamente del campo o después de haber pasado por drencher.

En este último caso, la zona siempre tiene agua procedente del escurrido de palets o bins después de ser tratados con el drencher.

La limpieza y desinfección debe ser diaria.

6.3 Zona sucia de las líneas de confección y preselección

Ya hemos comentado los problemas que puede ocasionar esta zona, así como que su limpieza y desinfección debe ser diaria, al finalizar la jornada de trabajo.

6.4 Zona de expedición

Esta zona es, normalmente, la que menos problemas de suciedad tiene, porque se almacenan palets listos para su carga, ya confeccionados o proceden de cámaras de preenfriamiento, también confeccionados.

Sin embargo su limpieza y desinfección debe realizarse a diario.

6.5 Almacén en general

Dado que, en campaña, siempre hay fruta en el almacén que puede ser afectada por los productos utilizados en desinfección, puede realizarse la limpieza diaria con las máquinas que se utilizan para este fin, a las que se puede incorporar un desinfectante al agua de limpieza.

La limpieza y desinfección de las zonas ocupadas por la línea y denominadas «Resto de componentes de la línea de confección» en este trabajo deben limpiarse y desinfectarse una vez por semana.

El resto del almacén, paredes, techos y aquellos lugares de difícil acceso, pueden desinfectarse una vez al mes aplicando fumígenos, que como hemos comentado la vía de transmisión de los fungicidas es el aire.

Una vez al año debe hacerse una limpieza y desinfección completas, que normalmente se aprovecha el inicio de campaña.

7 PLANES A ESTEBLECER

  • 1. Plan de control de aguas utilizadas en el almacén.
  • 2. Plan de control de productos químicos postcosecha.
  • 3. Plan de control de limpieza y desinfección.
  • 4. Plan de control de mantenimiento de las líneas y accesorios.
  • 5. Plan de control de proveedores de todo tipo de materiales.
  • 6. Plan de control de residuos del almacén.
  • 7. Plan para comprobar que el sistema funciona adecuadamente.

8 ORGANIGRAMA DE EQUIPO