Tuberculosis en Olivo Pseudomonas savastanoi Smith

Tuberculosis en Olivo Pseudomonas savastanoi Smith

Fuente Boletín de Avisos del Centro de Sanidad y Certificación Vegetal del Gobierno de Aragón

Esta enfermedad está provocada por una bacteria que penetra por las heridas. Se manifiesta a modo de tumores en ramas de 2-3 años que dificultan el paso de la savia. Si bien la temperatura óptima para el desarrollo de esta enfermedad es de 22-25ºC también pueden darse infecciones con temperaturas entre 5-10ºC. La variedad empeltre es muy susceptible y la variedad arbequina está catalogada como susceptible.

No existen tratamientos curativos por lo que se eliminarán las ramas afectadas mediante la poda en días no lluviosos, podando los árboles afectados los últimos y desinfectando la herramienta de poda. Después de la recolección sobre todo si es por vareo o mediante vendimiadora, se realizará un tratamiento con cobre.
Los tratamientos serán preventivos, no existen tratamientos curativos.
Producto recomendado: Cobre

UP Formulados
SULFATO CUPROCALCICO 20% (EXPR. EN CU) [WP] P/P
SULFATO TRIBASICO DE COBRE 19% (EXPR. EN CU) [SC] P/V
OXICLORURO DE COBRE 38% (EXPR. EN CU) [SC] P/V
OXIDO CUPROSO 50% (EXPR. EN CU) [WP] P/P
OXICLORURO DE COBRE 50% (EXPR. EN CU) [WP] P/P
SULFATO CUPROCALCICO 25% (EXPR. EN CU) [WP] P/P
OXICLORURO DE COBRE 70% (EXPR. EN CU) [SC] P/V
OXIDO CUPROSO 80% (EXPR. EN CU) [SC] P/V
HIDROXIDO CUPRICO 50% (EXPR. EN CU) [WP] P/P
SULFATO CUPROCALCICO 20% (EXPR. EN CU) [WG] P/P
OXICLORURO DE COBRE 50% (EXPR. EN CU) [WG] P/P
OXICLORURO DE COBRE 52% (EXPR. EN CU) [SC] P/V
HIDROXIDO CUPRICO 35% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 50% (EXPR. EN CU) [WG] P/P
OXICLORURO DE COBRE 37,5% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 36% (EXPR. EN CU) [SC] P/V
OXIDO CUPROSO 75% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 13,6% (EXPR. EN CU) + OXICLORURO DE COBRE 13,6% (EXPR. EN CU) [SC] P/V
HIDROXIDO CUPRICO 30% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 50% (EXPR. EN CU) [SC] P/V
HIDROXIDO CUPRICO 36% (EXPR. EN CU) [SC] P/V (ESP.)
UP HIDROXIDO CUPRICO 40% (EXPR. EN CU) [WG] P/P
UP UP: Uso protegido: los formulados marcados con este símbolo no están autorizados genéricamente para el uso seleccionado, sino únicamente aquellos productos, de esa formulación, bajo derechos de protección de datos por 10 años que el artículo 30 del RD

 

Cultivos exentos de Asesoramiento en Gestion Integrada de plagas

Cultivos exentos de Asesoramiento en Gestion Integrada de plagas

No dude en consultarnos 963252569 Asesoria en Produccion Integrada inscrita en el Registro Oficial de Productores y Operadores (ROPO)

Puedes comprar nuestro cuaderno de explotacion integrada en excel por

59 € IVA incluido

Pago por transferencia bancaria y envio por correo electronico.

A continuación os expongo las producciones y tipos de explotaciones de baja utilización de productos fitosanitarios exentas de asesoramiento en Gestión integrada de plagas.

Gestion integrada de plagas cultivos exentos de asesoramiento 1Gestion integrada de plagas cultivos exentos de asesoramiento 2 Odenado Alfabeticamente

CULTIVO O CUBIERTA SECANO REGADIO INVERNADERO / CULTIVO PROTEGIDO
ACEITUNA DE ALMAZARA NO EXENTO A PARTIR DE 5 HA NO EXENTO A PARTIR DE 5 HA
ACEITUNA DE DOBLE APTITUD NO EXENTO A PARTIR DE 5 HA NO EXENTO A PARTIR DE 5 HA
ACEITUNA DE MESA NO EXENTO A PARTIR DE 5 HA NO EXENTO A PARTIR DE 5 HA
ACELGA EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
AGUACATE EXENTO EXENTO NO EXENTO A PARTIR DE 0,5 HA
AJO EXENTO NO EXENTO A PARTIR DE 2 HA
ALBARICOQUERO EXENTO NO EXENTO A PARTIR DE 2 HA
ALCACHOFA EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
ALFALFA EXENTO NO EXENTO A PARTIR DE 5 HA
ALGARROBAS EXENTO EXENTO
ALGARROBO EXENTO EXENTO
ALGODON NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 2 HA
ALMENDRO EXENTO EXENTO
ALTRAMUZ EXENTO EXENTO
APIO NO EXENTO A PARTIR DE 2 HA
AROMATICAS (LAVANDA,LAVANDIN,ETC) EXENTO EXENTO
ARROZ NO EXENTO A PARTIR DE 2 HA
AVELLANO EXENTO EXENTO
AVENA EXENTO EXENTO
BATATA EXENTO EXENTO
BERENJENA EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
CACAHUETE EXENTO
CALABACIN EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
CALABAZA EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
CAÑA DE AZUCAR
CAQUI EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
CASTAÑO FRUTO EXENTO EXENTO
CEBADA DE 2 CARRERAS EXENTO EXENTO
CEBADA DE 6 CARRERAS EXENTO EXENTO
CEBOLLA EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
CENTENO EXENTO EXENTO
CEREZO Y GUINDO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
CHAMPIÑON EXENTO
CHIRIMOYO EXENTO EXENTO
CHOPO EXENTO EXENTO
CHUFA EXENTO
CHUMBERA EXENTO
CIRUELO EXENTO NO EXENTO A PARTIR DE 2 HA
COL BROCOLI EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
COL REPOLLO EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
COLES Y BERZAS FORRAJERAS EXENTO EXENTO
COLIFLOR NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
COLZA EXENTO EXENTO
CONDIMENTOS (ANIS,AZAFRAN, ETC) EXENTO EXENTO
CONIFERAS EXENTO
CONIFERAS Y FRONDOSAS EXENTO
ESCAROLA NO EXENTO A PARTIR DE 2 HA
ESPARRAGO EXENTO NO EXENTO A PARTIR DE 2 HA
ESPINACA NO EXENTO A PARTIR DE 2 HA
FLORES Y ORNAMENTALES EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
FRAMBUESO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
FRESA-FRESON EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
FRONDOSAS CRECIMIENTO LENTO EXENTO
FRONDOSAS CRECIMIENTO RAPIDO EXENTO EXENTO
GARBANZOS EXENTO EXENTO
GIRASOL EXENTO EXENTO
GRANADO EXENTO NO EXENTO A PARTIR DE 2 HA
GRELO EXENTO NO EXENTO A PARTIR DE 2 HA
GUISANTE VERDE EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
GUISANTES SECOS EXENTO EXENTO
HABAS SECAS EXENTO EXENTO
HABAS VERDES EXENTO NO EXENTO A PARTIR DE 2 HA
HIGUERA EXENTO NO EXENTO A PARTIR DE 2 HA
JUDIAS SECAS EXENTO EXENTO NO EXENTO A PARTIR DE 0,5 HA
JUDIAS VERDES EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
KIWI EXENTO NO EXENTO A PARTIR DE 2 HA
LECHUGA EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
LENTEJAS EXENTO EXENTO
LIMONERO EXENTO NO EXENTO A PARTIR DE 2 HA
LINO
LOMBARDA NO EXENTO A PARTIR DE 2 HA
LUPULO EXENTO
MAIZ EXENTO EXENTO
MAIZ DULCE EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
MAIZ FORRAJERO EXENTO EXENTO
MANDARINO EXENTO NO EXENTO A PARTIR DE 2 HA
MANGO EXENTO EXENTO NO EXENTO A PARTIR DE 0,5 HA
MANZANO EXENTO NO EXENTO A PARTIR DE 2 HA
MATORRAL EXENTO
MELOCOTONERO Y NECTARINAS EXENTO NO EXENTO A PARTIR DE 2 HA
MELON EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
MEMBRILERO EXENTO NO EXENTO A PARTIR DE 2 HA
MEZCLA DE CEREALES DE INVIERNO EXENTO EXENTO
NABO FORRAJERO EXENTO EXENTO
NARANJO EXENTO NO EXENTO A PARTIR DE 2 HA
NARANJO AMARGO EXENTO NO EXENTO A PARTIR DE 2 HA
NISPERO EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
NOGAL FRUTO EXENTO EXENTO
OTRAS OLEAGINOSAS EXENTO EXENTO
OTROS CITRICOS EXENTO NO EXENTO A PARTIR DE 2 HA
OTROS FORRAJES (CEREAL INV,SORGO,TREBOL) EXENTO EXENTO
OTROS FRUTALES EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
PAPAYA NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
PASTIZAL ALTA MONTAÑA EXENTO
PASTIZAL MATORRAL EXENTO
PASTIZALES EXENTO
PATATA NO EXENTO A PARTIR DE 5 HA NO EXENTO A PARTIR DE 5 HA
PEPINO EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
PERAL EXENTO NO EXENTO A PARTIR DE 2 HA
PIMIENTO EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
PIMIENTO PARA INDUSTRIA NO EXENTO A PARTIR DE 2 HA
PIÑA NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
PISTACHO EXENTO EXENTO
PLATANERA EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
POMELO EXENTO NO EXENTO A PARTIR DE 2 HA
PRADERAS POLIFITAS EXENTO EXENTO
PRADOS NATURALES (en regadio) EXENTO
PRADOS NATURALES (en secano) EXENTO
PUERRO EXENTO NO EXENTO A PARTIR DE 2 HA
REMOLACHA AZUCARERA EXENTO NO EXENTO A PARTIR DE 5 HA
REMOLACHA FORRAJERA EXENTO NO EXENTO A PARTIR DE 5 HA
REMOLACHA MESA NO EXENTO A PARTIR DE 2 HA
SANDIA EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
SOJA EXENTO EXENTO
SORGO EXENTO EXENTO
TABACO EXENTO NO EXENTO A PARTIR DE 2 HA
TOMATE EXENTO NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 0,5 HA
TOMATE INDUSTRIA NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 2 HA
TRIGO BLANDO Y SEMIDURO EXENTO EXENTO
TRIGO DURO EXENTO EXENTO
TRITICALE EXENTO EXENTO
UVA DE MESA NO EXENTO A PARTIR DE 2 HA NO EXENTO A PARTIR DE 2 HA
UVA DE TRANSFORMACION NO EXENTO A PARTIR DE 5 HA NO EXENTO A PARTIR DE 5 HA
VEZA EXENTO EXENTO
VEZA (veza+avena) PARA FORRAJE EXENTO EXENTO
YEROS EXENTO EXENTO
ZANAHORIA EXENTO NO EXENTO A PARTIR DE 2 HA
VIVEROS NO EXENTO A PARTIR DE 1 HA NO EXENTO A PARTIR DE 1 HA NO EXENTO A PARTIR DE 1 HA

Repilo en Olivo

Repilo en Olivo

Esta enfermedad provoca una defoliación precoz del olivo, afectando seriamente a la producción y debilitando a los árboles a largo plazo.


Las lesiones que provoca la enfermedad se localizan especialmente en las hojas. Con menor frecuencia afecta también a los frutos y a sus pedúnculos o cabillos.
Los síntomas característicos se manifiestan en el haz de las hojas en formas de manchas circulares, de color oscuro, a veces con un halo amarillento alrededor, y en ocasiones, esta coloración afecta a toda la hoja.
A medida que envejecen, las manchas adquieren una coloración negruzca debido al desarrollo sobre ellas de las conidias del hongo; otras veces, por el contrario, tienen una coloración grisácea o blanquecina debido a la separación de la cutícula de la epidermis, interponiéndose una capa de aire que le da ese aspecto. En el envés de la hoja sólo se aprecian manchas oscuras difusas, generalmente, a lo largo del nervio central.
Las hojas afectadas caen prematuramente -las jóvenes tardan más en caer que las de dos años- produciéndose una defoliación, a veces, bastante intensa, que deja las ramas prácticamente peladas, de donde proviene el nombre vulgar de “Repilo”.
En ocasiones, el ataque se produce en el peciolo de la hoja, provocando su rápida caída, ya sea aún verde o tras ponerse amarillenta.

http://www.aceiteoliva.info/wp-content/uploads/2010/02/repilo-plaga-desfoliacion-olivo.jpgEn cuanto al fruto, la infección suele afectar sólo al pedúnculo, en el cual se aprecian manchas oscuras alargadas, lo que provoca que la aceituna se arrugue, se seque, y acabe por caer, quedándose acompañada del pedúnculo lo que suele permitir distinguir esta caída del fruto de la originada por otras causas.

Las infecciones directamente en la aceituna son raras y, en caso de que se produzcan, los frutos aparecen deformados como consecuencia de la falta de crecimiento por la zona afectada por el hongo.
El organismo causal (Spilocaea oleaginae) sobrevive durante los períodos desfavorables en las hojas caídas, así como en las hojas afectadas que permanecen en el árbol. En dichas hojas, si las condiciones ambientales son adecuadas, se pueden formar conidias disponibles para la dispersión durante todo el año.
Las conidias son dispersadas a cortas distancias por las gotas de lluvia, y en menor medida por el viento, ya que cuando el ambiente es seco las conidias no se desprenden fácilmente del conidióforo por las corrientes de aire.
Para que la infección tenga lugar es necesaria una humedad relativa próxima a la saturación, o agua libre, y que la hoja permanezca bañada durante más de 4 horas. En estas condiciones las conidias pueden germinar en un rango de temperatura bastante amplio, entre 8-28º C, si bien el óptimo se sitúa en 20-22º C.

El período de incubación es muy variable en función de las condiciones ambientales, edad de la hoja, cultivar, etc., oscilando entre 10- 15 días en condiciones muy favorables, hasta más de 4 meses, siendo lo más frecuente de 2 a 3 meses.
Existe un método que permite realizar un diagnóstico precoz de la enfermedad, antes de que aparezcan las manchas características, y que consiste en introducir las hojas a estudiar en una solución de hidróxido sódico al 5% durante 20-25 minutos, apareciendo en el haz de las hojas unas manchas circulares negras, que no son visibles antes de su inmersión en la sosa.
La utilización de este método ha permitido distinguir varias fases en el desarrollo de la enfermedad: Germinación de la espora (I), Invasión de las células epidérmicas (IIa), Emergencia de los conidióforos (IIb), Aparición de los conidióforos a la superficie (III), Esporulación (IVa), Aparición de síntomas (Ivb), Diseminación de esporas (V).

Existen diferencias notables en la susceptibilidad de los cultivares de olivo a la enfermedad. Parece ser, en general, que las variedades más alejadas del tipo del olivo silvestre o acebuche (al parecer inmune) son las más propensas a ser invadidas por el hongo. Los cultivares de hoja y fruto pequeño suelen ser más resistentes.
Atendiendo a su susceptibilidad, se pueden agrupar las diferentes variedades de olivo cultivadas en España en las siguientes categorías:

  • Cultivares muy susceptibles: Arbequina, Frantoio, Manzanilla, Picholine Maroccaine, Verdial.
  • Cultivares moderadamente susceptibles: Cornicabra, Gordal, Hojiblanca, Nevadillo de San Martos, Picual.
  • Cultivares poco susceptibles: Ascolano, Farga, Leccino, Nevadillo blanco, Sevillano, Zorzaleño.

Para el resto de los cultivares se desconoce su grado de susceptibilidad.


Actualmente, el único método eficaz que se conoce para el control de la enfermedad son los tratamientos fungicidas. Si bien, existen algunas medidas culturales que pueden reducir su incidencia y severidad, como son las podas selectivas que favorezcan la aireación de la copa, especialmente en las orientaciones Norte y Este, y eviten la condensación de agua sobre las hojas, condición que tanto favorece el desarrollo de la enfermedad. En el abonado, evitar los excesos de Nitrógeno, que favorece la infección al formarse tejidos de menor consistencia. Así mismo, resulta conveniente la eliminación o enterrado de las hojas enfermas caídas tras las épocas de máximas filotopsis (finales de primavera), lo que reduce notablemente la cantidad de inóculo de la parcela.
A pesar de los enormes avances que se han producido en el campo de la terapéutica vegetal, siguen siendo los fungicidas cúpricos los que, prácticamente en exclusiva, protagonizan la lucha contra esta enfermedad, bien sea en forma de oxicloruro de cobre, óxido cuproso, o la clásica mezcla de sulfato de cobre y cal.
Estos fungicidas cúpricos, solos o en mezclas con fungicidas orgánico-metálicos (Folpet, Maneb, Zineb), son productos de contacto, es decir, no penetran en el interior del tejido vegetal, si no que se quedan en la superficie formando una barrera química que impide o evita la penetración del hongo en la planta y, por tanto, han de ser usados preventivamente.


La metodología recomendada por los Servicios de Protección de Vegetales para realizar el seguimiento de la enfermedad y poder determinar la necesidad o no del tratamiento, consiste en analizar la incidencia de la enfermedad sobre una muestra de 200 hojas, tomadas al azar en las distintas orientaciones, sobre un total de 5 árboles. En ellas se observará el Repilo visible y el Repilo total (visible mas incubado) por inmersión de las hojas en una solución de NaOH al 5%, durante 20-25 minutos. Estas observaciones deben realizarse en los períodos de mayor riesgo: final de verano-otoño y final de invierno-inicio de primavera. La periodicidad de las mismas debe ser semanal en los períodos de mayor probabilidad de que se produzcan infecciones (después de lluvias), y cada 2-3 semanas en el resto.


El Umbral de Tratamiento está determinado por la incidencia de la enfermedad y la mayor o menor susceptibilidad varietal. En variedades muy susceptibles y moderadamente susceptibles, cuando el Repilo total de verano sea elevado (30-40% de hojas infectadas), debe tratarse antes de que se produzcan las primeras lluvias de otoño. Cuando el Repilo total de verano sea bajo (10% de hojas infectadas) puede demorarse el tratamiento hasta la aparición de nuevas manchas esporuladas en las hojas. En variedades poco susceptibles no es necesario tratar. En zonas húmedas y con variedades susceptibles, cuando después del
período invernal vuelven a darse condiciones óptimas para nuevas infecciones, el árbol debe estar de nuevo protegido ya que, además, se va a iniciar la aparición de nuevas hojas, generalmente más susceptibles a la infección.

Materias activas recomendadas para el control de repilo

DIFENOCONAZOL 1,67% [EC] P/V
DIFENOCONAZOL 25% [EC] P/V
DODINA 20% + OXICLORURO DE COBRE 30% (EXPR. EN CU) [WP] P/P
DODINA 40% [SC] P/V
DODINA 65% [WP] P/P
FOLPET 10% + OXICLORURO DE COBRE 11,2% (EXPR. EN CU) + SULFATO CUPROCALCICO 10,4% (EXPR. EN CU) [WP] P/P
HIDROXIDO CUPRICO 13,6% (EXPR. EN CU) + OXICLORURO DE COBRE 13,6% (EXPR. EN CU) [SC] P/V
HIDROXIDO CUPRICO 20% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 25% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 30% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 30% (EXPR. EN CU) + MANCOZEB 15% [WP] P/P
HIDROXIDO CUPRICO 35% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 35% (EXPR. EN CU) + MANCOZEB 20% [WP] P/P
HIDROXIDO CUPRICO 36% (EXPR. EN CU) [SC] P/V
HIDROXIDO CUPRICO 36% (EXPR. EN CU) [SC] P/V (ESP.)
HIDROXIDO CUPRICO 37,5% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 40% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 50% (EXPR. EN CU) [SC] P/V
HIDROXIDO CUPRICO 50% (EXPR. EN CU) [WG] P/P
HIDROXIDO CUPRICO 50% (EXPR. EN CU) [WP] P/P
KRESOXIM-METIL 50% [WG] P/P
MANCOZEB 15% + OXICLORURO DE COBRE 10% (EXPR. EN CU) + SULFATO CUPROCALCICO 10% [WP] P/P
MANCOZEB 15% + OXICLORURO DE COBRE 10% (EXPR. EN CU) + SULFATO CUPROCALCICO 11% (EXPR. EN CU) [WP] P/P
MANCOZEB 15% + OXICLORURO DE COBRE 37,5% (EXPR. EN CU) [WP] P/P
MANCOZEB 17,5% + OXICLORURO DE COBRE 22% (EXPR. EN CU) [WP] P/P
MANCOZEB 20% + OXICLORURO DE COBRE 30% (EXPR. EN CU) [WP] P/P
MANCOZEB 35% [SC] P/V
MANCOZEB 42% [SC] P/V
MANCOZEB 45% [SC] P/V
MANCOZEB 75% [WG] P/P (ESP.)
MANCOZEB 8% + SULFATO CUPROCALCICO 20% (EXPR. EN CU) [WP] P/P
MANEB 17,5% + OXICLORURO DE COBRE 30% (EXPR. EN CU) [WP] P/P
MANEB 8% + SULFATO CUPROCALCICO 20% (EXPR. EN CU) [WP] P/P
OXICLORURO DE COBRE 11% (EXPR. EN CU) + SULFATO CUPROCALCICO 10% (EXPR. EN CU) [WP] P/P
OXICLORURO DE COBRE 20% (EXPR. EN CU) + PROPINEB 15% [WP] P/P
OXICLORURO DE COBRE 25% (EXPR. EN CU) [WG] P/P
OXICLORURO DE COBRE 35% (EXPR. EN CU) [WG] P/P
OXICLORURO DE COBRE 37,5% (EXPR. EN CU) [WG] P/P
OXICLORURO DE COBRE 38% (EXPR. EN CU) [SC] P/V
OXICLORURO DE COBRE 50% (EXPR. EN CU) [WG] P/P
OXICLORURO DE COBRE 50% (EXPR. EN CU) [WP] P/P
OXICLORURO DE COBRE 52% (EXPR. EN CU) [SC] P/V
OXICLORURO DE COBRE 70% (EXPR. EN CU) [SC] P/V
OXIDO CUPROSO 40% (EXPR. EN CU) [01] P/P
OXIDO CUPROSO 50% (EXPR. EN CU) [WP] P/P
OXIDO CUPROSO 75% (EXPR. EN CU) [WG] P/P
OXIDO CUPROSO 80% (EXPR. EN CU) [SC] P/V
SULFATO CUPROCALCICO 12,4% (EXPR. EN CU) [SC] P/V
SULFATO CUPROCALCICO 20% (EXPR. EN CU) [WG] P/P
SULFATO CUPROCALCICO 20% (EXPR. EN CU) [WP] P/P
SULFATO CUPROCALCICO 25% (EXPR. EN CU) [WP] P/P
SULFATO TRIBASICO DE COBRE 19% (EXPR. EN CU) [SC] P/V
SULFATO TRIBASICO DE COBRE 40% (EXPR. EN CU) [WG] P/P
SULFATO TRIBASICO DE COBRE 6% (EXPR. EN CU) [SL] P/V
TEBUCONAZOL 20% [EW] P/V
TEBUCONAZOL 25% ((ESP)) [EW] P/V
TEBUCONAZOL 50% + TRIFLOXISTROBIN 25% [WG] P/P
TRIFLOXISTROBIN 50% [WG] P/P

Bioestimulantes de ultima generacion

Bioestimulantes de ultima generacion

Hoy os presentamos un producto novedoso y de calidad

Sipcam Iberia ha desarrollado BLACKJAK® es un innovador Bioestimulante de última generación 100% natural con materia orgánica altamente descompuesta y de rápida asimilación (ácidos húmicos, fúlvicos, úlmicos, humina y nutrientes naturales) con la excepcional característica de tener pH ácido (4,2).

Por todos es sabido desde hace muchos años, que el humus es muy beneficioso para los suelos y las plantas, pero la gran pregunta siempre ha sido cómo extraer las materias activas de mayor asimilación y utilidad para las plantas de las diversas fuentes conocidas, teniendo en cuenta que:

Ante la dificultad de la extracción de todas estas materias húmicas activas, debido a sus diferencias de solubilidad, la mayoría de los productos del mercado se basan en la extracción química de tan sólo los ácidos húmicos y fúlvicos mediante hidróxidos de sodio/potasio, obteniendo además un pH altamente básico (>9).

“¿Como obtener un producto que tenga un pH ácido (4-5) y que contenga todas las materias húmicas activas posibles; ácidos húmicos, fúlvicos, úlmicos y humina además de otros nutrientes beneficiosos (N, Cu, Zn) que se encuentran de forma natural en la materia prima original, leonardita de reconocida calidad?”.

Mientras que los ácidos húmicos y fúlvicos actúan principalmente mediante lo que llamamos “efectos indirectos” como activadores del suelo promoviendo el metabolismo de los microorganismos y la dinámica de los nutrientes.

Los ácidos úlmicos y la humina por el contrario actúan más como activadores de las plantas mediante “efectos directos” a nivel metabólico, hormonal y enzimático:
Ciertos componentes de la Humina son directamente absorbidos y transportados por el sistema vascular de las plantas y actúan como catalizadores de numerosos procesos metabólicos. También han sido identificadas hormonas de crecimiento que fomentan el crecimiento radicular, vegetativo y el desarrollo general de la planta.
Por otra parte los Ácidos Úlmicos tienen la capacidad de ionizar los metales, actuando como
agentes quelantes naturales. A su vez al igual que la humina también poseen la capacidad de estimular y aumentar el desarrollo radicular.

Efectos de las materias humicas activas

a. SUMINISTRAN NUTRIENTES A LAS PLANTAS:

Las materias húmicas activas sirven como fuente de N, P y azufre que liberan a través de los procesos de mineralización que la materia orgánica sufre en el suelo. Otra mecanismo de suministro de elementos nutritivos a la planta se basa en la posibilidad de complejar metales y cationes que tienen las sustancias húmicas.

b. MEJORA LA ESTRUCTURA DE LOS SUELOS:
Promueve la formación de agregados estables entre las partículas del suelo evitando la compactación de los mismos, con el consiguiente aumento de la aireación y una mejor circulación del agua causada por el incremento de la capilaridad del suelo.

c. INCREMENTO DE LA POBLACIÓN MICROBIANA:
Como fuentes de P y C que son contribuyen a la estimulación y desarrollo de las poblaciones microbianas y por tanto a la actividad enzimática asociada.

d. INCREMENTO DE LA CAPACIDAD DE INTERCAMBIO CATIÓNICO (CIC):
Las materias húmicas atraen a los iones positivos (K+, Ca+2, Mg+2, Fe+3, Cu+2, Mn+2, Zn+2) evitando la lixiviación y facilitando la absorción de los mismos, actuando como agentes quelantes naturales.

e. AUMENTO DE LA CAPACIDAD DE RETENCIÓN DE AGUA (CRA):
Las materias húmicas activas disminuyen las pérdidas por evaporación al capturar los cationes mediante la interacción de moléculas de agua (dipolo) provenientes de la capa de hidratación del suelo.

f. EFECTOS SOBRE EL METABOLISMO ENERGÉTICO, SINTESÍS DE PROTEÍNAS, ÁCIDOS NUCLEICOS Y ACTIVIDAD ENZIMÁTICA.
Diversos trabajos demuestran que la presencia de sustancias húmicas mejora la fotosíntesis, la respiración así como la síntesis del ARN-m y de proteínas, especialmente enzimas (fosforilasas, catalasas, invertasas, etc.). Numerosos autores denominan esta acción hormonal de las sustancias húmicas como comportamiento “auxin-like”.

Ensayo cualitativo y cuantitativo de aplicación foliar en olivar de la variedad “Manzanilla” (dos aplicaciones una a tamaño de fruto del 50% y otra en el endurecimiento de hueso).

BlackjakVentajas del producto

  1. BLACKJAK® es la fertilización orgánica de mayor eficacia porque debido a sus bajas dosis conseguimos un coste por hectárea muy reducido.
  2. BLACKJAK® es un líquido de fácil y rápida solubilidad que le confiere una total comodidad de manejo, almacenamiento y transporte.
  3. BLACKJAK® debido a su pH ácido estimula el desarrollo radicular, ayudando a las raíces a absorber más fácil, rápida y abundantemente mayor cantidad de micronutrientes  importantes.
  4. BLACKJAK® disminuye el pH de los caldos de pulverización potenciando el efecto de los fitosanitarios y contribuyendo a una mayor y más rápida absorción de los nutrientes foliares (cambios más rápidos de color en la planta y frutos).
  5. BLACKJAK® es un producto 100% natural (en proceso de certificación para agricultura ecológica).
  6. BLACKJAK® es innovador y diferente del resto al contener HUMINA y ÁCIDOS  ÚLMICOS, compuestos que estimulan y aumentan el crecimiento radicular, vegetativo y desarrollo general de la planta y que no están presentes en los fertilizantes orgánicos tradicionales del mercado.
  7. BLACKJAK® además contiene nutrientes naturales N, Cu, Zn no exógenos propios de la leonardita original.
  8. BLACKJAK® aplicado al suelo contribuye a mejorar la estructura del suelo, reducir la salinidad, desbloquea la absorción de nutrientes, favorece la actividad microbiana y aumenta la capacidad de intercambio catiónico de los macro y micro nutrientes.
  9. BLACKJAK® también actúa como agente quelatante natural para los elementos macro y micro con lo que promueve la absorción de nutrientes y posterior traslocación de los mismos en la planta.
  10. BLACKJAK® se puede aplicar tanto foliar como en sistemas de riego por goteo ya sea solo o en combinación con otros nutrientes y fitosanitarios.

Puede encontrar más información en www. Sipcam Iberia.es

Momento adecuado u optimo para aplicar un fitosanitario

Momento adecuado u optimo para aplicar un fitosanitario

La eficacia de un fitosanitario depende entre otros factores de los siguientes factores:

  1. Realizar correctamente la mezcla de productos + aditivos.
  2. Que el estado de la plaga o hierba sea el adecuado para la aplicación.
  3. Que las condiciones ambientales sean la optimas

Dando los dos primeros puntos como controlados ya que entiendo que el lector de este articulo sabe de lo que hablamos, vamos a centrarnos en el tercero, para ello SYNGENTA dispone de una aplicación en su web que es perfecta para resolver este tercer punto.

No olvidar de tener muy en cuenta los siguientes factores:

La Inversión térmica normalmente se da cuando calma el viento y comienza a ascender unacapa de aire caliente e ingresar por debajo una capa de aire frío, al invertirse estas capas de aire si se realizan aplicaciones, las gotas asperjadas quedaran suspendida en el aire por diferencia de densidades y no caerá como debe, produciéndose desplazamientos laterales de las mismas a distancia que pueden producir graves daños si terminan cayendo en un cultivo sensible al producto aplicado. Ante estas condiciones no se recomienda aplicar.

La elevada temperatura y baja humedad relativa, son condiciones que incrementan la evaporación de las gotas, siendo esta última más importante que la primera, ya que existen casos en que la temperatura no es tan elevada, pensando que no habrá evaporación, sin tener en cuenta que la humedad relativa termina definiendo esta variable, afectando demasiado la aplicación por pérdida de gotas si no se está usando un antievaporante de calidad en esas condiciones.

El viento es un aliado de las aplicaciones ya que si las realizamos sin él, nos será muy difícil ingresar con las gotas asperjada en un cultivo cerrado. Se cree que la mejor aplicación es sin viento, sin embargo es cuando mayor probabilidad tenemos de que se produzca una inversión térmica, con las consecuencias que esta ocasiona. Debemos manejarnos con vientos a partir de 8 km/h cuando aplicamos en cultivos cerrados, dejando ingresar de esta manera a las gotas en el cultivo.

El tamaño y uniformidad de las gotas es otro de los factores de gran importancia que debe tenerse en cuenta antes de la aplicación, esto dependerá de algunas variables, tales como objetivo a tratar y condiciones ambientales. Debemos tener en cuenta una relación que existe entre tamaño de gota y cantidad de impactos, ya que al dividir en dos el diámetro de una gota obtendremos ocho gotas de la mitad de ese diámetro que llevaran en su conjunto el mismo volumen que la primera, permitiendo aumentar la probabilidad de impactar en el objetivo, más aún cuando este sea de un tamaño pequeño como puede ser un insecto, o tratarse de una maleza de hojas finas y verticales como una ciperácea, etc. Ya que si aplicáramos con gotas de un tamaño mayor a los 200 micrones, es muy factible que no lleguemos al objetivo. Los 200 micrones se consideran un tamaño óptimo para la mayoría de los tratamientos. En el caso de las aplicaciones aéreas el tamaño de gota es menor con muy buenos resultados siempre y cuando las mismas vayan protegidas por antievaporantes de calidad.
Tanto en las aplicaciones aéreas como terrestres las gotas deben estar protegidas pudiendo lograr excelentes resultados si se tienen en cuenta todas las variables que intervienen y se toman las precauciones necesarias. Las gotas grandes quedan retenidas en la parte superior del arbol o impactan en este y caen al suelo por su propio peso (efecto paraguas), lo mismo sucede en caso de encontrarse con un espacio abierto entre la cubierta vegetal, ya que al caer en forma vertical terminan impactando en el suelo y no en las hojas, por eso es que hablamos de producir gotas pequeñas que al caer con cierto movimiento y horizontalidad van impactando en los diferentes tercios de un cultivo.

La calidad del agua debe ser tenida en cuenta ya que la cantidad de cationes presentes y el pH de la misma determinarán inactivación y la vida media de los activos que estemos aplicando, convirtiéndose el agua de aplicación muchas veces en un contaminante de los fitosanitarios. Es por eso que ante aguas duras y de elevado pH se deben utilizar secuestrantes de cationes y reductores de pH.
Los altos volúmenes de agua utilizados para las aplicaciones, solo hacen que se diluyan más
los activos, que se incremente la evaporación (a más agua en las gotas, más evaporación), que se superpongan las gotas aumentando la dilución de los activos una vez que impactaron en el objetivo.

Tipos de cobres agricolas

Tipos de cobres agricolas

Tipos de Cobres

Existen 3 sales comerciales de cobre:

1. Oxidos (Hidroxidos, Oxidos, cobres rojos…) – Sol. ALTA – Pot. de ionizacion ALTO
2. Sulfatos (Caldo Bordeles…) – Solubilidad MEDIA – – Potencial de ionizacion MEDIO
3. Oxicloruros – Solubilidad BAJA – Potencial de ionizacion ALTO

Lo mejor es el OXICLORURO pues tiene la solubilidad mas baja, esto es que el cobre se va liberando mas lentamente (y por lo tanto actua mas tiempo) y un potencial de ionizacion ALTO (que tiene mas cantidad de ion cobre , que es la parte que tiene la accion fungicida e inhibe la germinacion de la espora).

Los Sulfatos tienen la ventaja de que la disponibilidad de cobre es mas rápida pero su efecto es muy corto, tienen menor potencial de ionización por eso sus dosis suelen ser mas altas.

Los óxidos liberan muy rápido el cobre y tienen un elevado potencial de ionización y por ello puede provocar fitotoxicidad por cambios de Tª.

Por lo tanto el oxicloruro es mas eficaz y persistente en el tiempo.

Dentro de los Oxicloruros también hay diferencias sobre todo por su tamaño de partícula. Cuanto mas pequeño mejor pues recubren mas y suelen aguantar mas el lavado por lluvia. También al ser la partícula mas pequeña el riesgo de fitotoxicidad es menor.

Se suelen formular con compuestos organicos (Mancoceb, propineb, metaram…) pues reaccionan con ellos y prolongan su eficacia (la del organico) de 2-3 dias pueden pasar a 7-10 dias.

Por contra otro argumento contra el Caldo Bordeles es que este al ser formulado con CAL tapa los estomas de la planta y no la deja respirar por asfixia.

Por precio hoy en día están mas o menos a la par, mucha gente piensa que el Caldo Bordelés es mas barato, pero no es cierto pues lleva una dosis altisima (dobla o triplica los oxicloruros).

Cultivo PS Dosis
Ajo 3 0,6-0,9%(600-900 g/100l)
Almendro 15 0,6-1%(600-1.000 g/100l)
Avellano 15 0,6-1%(600-1.000 g/100l)
Berenjena 10 0,6-1%(600-1.000 g/100l)
Brécol 15 0,6-1%(600-1.000 g/100l)
Cebolla 3 0,6-0,9%(600-900 g/100l)
Zanahoria 3 0,6-0,9%(600-900 g/100l)
Cítricos 15 0,2% (200 g/100l)
Coliflor 15 0,6-1%(600-1.000 g/100l)
Cucurbitáceas 3 0,6-0,75%(600-750 g/100l)
Frutales de hueso n.p. 0,6-1%(600-1.000 g/100l)
Frutales de pepita n.p. 0,6-1%(600-1.000 g/100l)
Granado 15 0,6-1%(600-1.000 g/100l)
Guisantes verdes 3 0,6-1%(600-1.000 g/100l)
Habas verdes 3 0,6-1%(600-1.000 g/100l)
Higuera 15 0,6-1%(600-1.000 g/100l)
Hortalizas de hoja 15 0,6-1%(600-1.000 g/100l)
Judías verdes 3 0,6-1%(600-1.000 g/100l)
Lúpulo 15 0,6-1%(600-1.000 g/100l)
Nogal 15 0,6-1%(600-1.000 g/100l)
Olivo 15 0,6-1%(600-1.000 g/100l)
Patata 15 0,6-1%(600-1.000 g/100l)
Pistacho 15 0,6-1%(600-1.000 g/100l)
Tallos jóvenes 3 0,6-1%(600-1.000 g/100l)
Tomate 10 0,6-1%(600-1.000 g/100l)
Vid 15 0,6-1%(600-1.000 g/100l)

El caldo bordelés es una combinación de sulfato cúprico y cal hidratada, inventado por los viñateros de la región de Burdeos, Francia, y conocida localmente como Bouillie Bordelaise. Se fabrica por neutralización de una solución de sulfato cúprico con la cal. Contiene 20 % de cobre (expresado en cobre metal). Fue inventada por el químico bordelés Ulysse Gayon y el botánico Alexis Millardet en 1880.

Formulaciones

Actualmente existen dos formulaciones.

Composición: SULFATO CUPROCALCICO 20% (EXPR. EN CU) [WG] P/P
Tipo de preparado: GRANULADO DISPERSABLE EN AGUA [WG]

Composición: SULFATO CUPROCALCICO 25% (EXPR. EN CU) [WP] P/P
Tipo de preparado: POLVO MOJABLE [WP]

Abonado del olivo

Abonado del olivo

Casimiro García García
Doctor Ingeniero Agrónomo
Profesor Titular de Producción Vegetal. Fitotecnia
ETSIA. Universidad Politécnica de Madrid

.

NECESIDADES NUTRICIONALES

Las necesidades responden a la cantidad de elementos nutritivos que el olivo consume a lo largo de su ciclo vegetativo. En estas necesidades están incluidos los requerimientos para:

  • • Producir la cosecha.
  • • Desarrollar nuevos órganos vegetativos: raíces, tallos, brotes y hojas.
  • • Crecimiento de órganos viejos permanentes: tronco y ramas.

El suelo, normalmente, no puede suministrar a una planta perenne los nutrientes necesarios para su crecimiento y producción en el tiempo adecuado. Es por ello, que el agricultor, si quiere atender las necesidades nutritivas del olivar, tendrá que establecer un programa de abonado racional basado en las extracciones de nutrientes por el olivo en relación a la producción esperada, la fertilidad del suelo, el estado de nutrición del árbol y los nutrientes aportados por las reservas contenidas en tallos y hojas viejas.

Las cantidades de nitrógeno, fósforo y potasio que el olivo extrae anualmente, por cada 1.000 kg de aceituna recogida, han sido estudiadas por varios investigadores, y pueden oscilar entre los siguientes valores:

Nutrientes (kg/1.000 kg de aceitunas)
N 15-20
P2O5 4-5
K2O 20-25

Tan importante como conocer las necesidades de nutrientes del olivo es conocer su ritmo de absorción a lo largo de las distintas fases vegetativas, que debe tenerse presente a la hora de aportarlos al cultivo.

Las mayores necesidades de nitrógeno se sitúan en la floración y el cuajado del fruto, en tanto que las de potasio son más importantes a partir del endurecimiento del hueso y el engorde de la aceituna.

Las necesidades de fósforo no presentan unas puntas tan acusadas y son más regulares a lo largo del ciclo.

El plan de abonado debe tener también presente la fertilidad del suelo y sus características
físico-químicas. La realización de análisis de suelos puede orientarnos sobre la capacidad de cada suelo para abastecer de nutrientes, de forma inmediata, a la plantación de olivar, sobre todo en lo que se refiere al suministro de fósforo y potasio.

Dado que el olivar se asienta en su mayor parte en suelos generalmente pobres en materia orgánica, el posible suministro de nitrógeno por su mineralización será escaso. La incorporación al suelo de las hojas viejas y otros residuos vegetales del árbol le aporta a medio y largo plazo materia orgánica.

En cuanto al fósforo, al ser los suelos donde vegeta el olivar, en una gran parte, ricos en carbonato cálcico, el fósforo está precipitado y por tanto no está disponible para el cultivo de forma inmediata. En lo que se refiere al potasio, son frecuentes las deficiencias en los suelos arcillosos en que se asienta el olivar, ya que el potasio está fuertemente fijado a las arcillas y las condiciones de sequía, normales en el cultivo, impiden su absorción.

Con relación al estado nutritivo del olivar, el análisis foliar proporciona una referencia muy válida que nos puede servir de guía para el cálculo del abonado. El análisis foliar es útil no sólo para conocer el nivel de nutrientes antes de que aparezcan deficiencias nutritivas, sino también para conocer la proporción entre ellos, ya que si está desequilibrada puede ocasionar trastornos nutricionales al cultivo.

Como en el olivo se pueden encontrar hojas de tres edades: del año en curso, de un año y de dos años, cuyos contenidos en nutrientes pueden variar, y como éstos también varían a lo largo del año, se debe realizar el muestreo de las hojas en la parada vegetativa del mes de julio y elegir las hojas con pecíolo procedentes de la parte central de la brotación del año. En la tabla 27.5 se muestran los niveles críticos en hojas de olivo.

Los órganos viejos permanentes, durante la brotación y floración, exportan nutrientes a otras partes del olivo. Como estos órganos, más adelante, recuperan del suelo los nutrientes exportados, esta aportación de nutrientes no debe considerarse en el plan de abonado.

En cambio, las hojas viejas sí deben considerarse como aportadoras de nutrientes, pues desde ellas se produce un trasvase de elementos nutritivos hacia los nuevos órganos y estos nutrientes no pueden reponerse a lo largo del ciclo vegetativo porque, poco tiempo después, estas hojas se desprenden del árbol.

Las inflorescencias, botones florales y frutos pequeños recién cuajados, caídos al suelo durante el proceso de floración y cuajado, y las hojas viejas que se desprenden, suponen una reincorporación al suelo de nutrientes que, a medio y largo plazo, pueden ser aprovechados por el olivo.

Papel de los nutrientes en el olivar.

El nitrógeno, es el elemento más importante en la fertilización del olivo. Acelera la actividad vegetativa y el desarrollo de la planta, aumenta la capacidad de asimilación de otros elementos e influye, más que los demás elementos, en la producción. Es poco estable en el suelo, razón por la que hay que tenerlo presente anualmente en los programas de fertilización.

Un abonado nitrogenado excesivo no mejora la calidad del aceite ni la producción, aumenta la sensibilidad a las heladas y a las enfermedades y retrasa la maduración de los frutos. En el olivar tradicional se recomienda aplicar entre 0,5 y 1 kg N/árbol, sin superar, en todo caso, 150 kg N/ha.

El fósforo forma parte de compuestos que intervienen en muchos procesos bioquímicos que tienen lugar en la planta. Acelera la maduración y mejora la floración y el cuajado. La respuesta del olivar a las aportaciones de fósforo es menos evidente que la de nitrógeno y sólo se produce al cabo de unos años de abonado. No suelen ser frecuentes, en las zonas olivareras españolas, los suelos pobres en fósforo, aunque al tener un alto contenido en caliza el fósforo está en forma insoluble. En caso de deficiencia se puede aplicar 0,5 kg P2O5/árbol.

El potasio desempeña una labor importante en el transporte de azúcares en la planta, en la transpiración y en numerosos procesos bioquímicos en los que tiene que estar presente. Aumenta la resistencia del árbol a las heladas y a las enfermedades criptogámicas. Mejora el tamaño y la calidad de los frutos.

El olivo precisa de grandes cantidades de potasio y si la cosecha es abundante y las extracciones han sido elevadas pueden presentarse deficiencias, necrosándose las hojas y defoliándose el árbol. También la deficiencia puede presentarse en años muy secos, en el secano. Las deficiencias de potasio son difíciles de corregir y por ello es importante mantener una adecuada concentración de este elemento en las hojas. El olivar responde bien a las aplicaciones de potasio que se sitúan entre 1 y 2 kg K2O/árbol.

El boro es un microelemento de gran importancia para el olivo, cuya deficiencia aparece más frecuentemente en suelos calizos y terrenos secos. Los olivos con deficiencias en boro presentan problemas en la floración y en el cuajado, con elevado número de frutos deformes. A veces la deficiencia se confunde con la de potasio.

El hierro es otro microelemento que debe ser tenido en cuenta en el olivo, que puede manifestar deficiencias en hierro aún estando este elemento presente en el suelo, debido a la inmovilización que produce el ión bicarbonato sobre este nutriente. Los árboles afectados por clorosis férrica presentan síntomas característicos de clorosis en las hojas.

En cuanto a los elementos secundarios, el calcio, es un elemento al que tradicionalmente se le ha prestado poca atención, porque la mayor parte del olivar está asentado en suelos muy
calizos y existe la errónea teoría, de que al haber mucho calcio en el suelo, el olivo ya absorberá el necesario; pero este calcio está en formas insolubles y por tanto puede ser necesario la aplicación de fertilizantes que aporten calcio soluble.

Deficiencias nutritivas

En la tabla siguiente se presentan los síntomas más frecuentes de deficiencias nutritivas en el olivar.

Elemento nutritivo Síntomas observados debido a deficiencias
Nitrógeno Raquitismo, entrenudos cortos, las hojas quedan pequeñas, deformadas y algunas veces con clorosis difusas, pudiendo aparecer más tarde algunos tintes rojizos sobre todo en las hojas viejas.
Ésta es una de las causas por la que, a veces, el ovario no alcanza su completo desarrollo.
Fósforo Algunos de los síntomas de carencia de fósforo son parecidos a los del nitrógeno, especialmente el poco desarrollo de las hojas y otras partes del árbol, pero sin presentar deformaciones como en aquel caso. Hojas de menor tamaño, en las que, en la parte apical, aparecen zonas de color verde más claro, mientras que se mantiene el color normal, o incluso más oscuro, en la zona próxima al pedúnculo.
Pueden aparecer pequeñas manchas cloróticas, sobre todo al final de verano y en invierno.Zonas necróticas, principalmente por la parte del ápice, y casi siempre marginales; corrientemente en invierno oprincipios de primavera. En ocasiones se ven olivos con este síntoma y no hay hojas con los anteriormente descritos.
Potasio Suelen manifestarse antes en los tejidos y partes más viejas, produciendo un debilitamiento de los mismos, porque al ser un elemento muy móvil, emigra fácilmente de un sitio a otro de la planta, y los tejidos más viejos se agotan en beneficio de los más jóvenes. Reducción del crecimiento vegetativo. Hojas más pequeñas que las normales y tienen en el ápice una zona de colormás o menos atabacado; en algún caso esa zona está en el borde pero casi siempre cerca del ápice; alguna vez losbordes se enrrollan. Normalmente no hay zona de transición entre la parte enferma y la que parece sana.
Calcio Intensa clorosis en las hojas en la parte apical, pudiendo variar el color de amarillo verdoso en las hojas jóvenes, al amarillo anaranjado en las más viejas; también en las hojas viejas pueden verse alguna vez zonas necrosadas e incluso bordes rasgados.El sistema radicular se desarrolla poco y cuando el proceso está avanzado, las partes terminales adquieren a veces una consistencia gelatinosa.
Magnesio Zonas cloróticas en las hojas que avanzan desde el ápice hasta la base, siendo gradual la transición de una zona a otra,por lo que no hay una línea clara de separación entre ambas. Si continúa la situación deficitaria, puede haberdefoliación en las ramitas jóvenes, acompañada de necrosis en las partes terminales, así como de una reduccióngeneral del crecimiento de la planta.
Azufre Este elemento interviene también en la formación de la clorofila y su falta produce una clorosis parecida a la de la carencia de nitrógeno.
Boro El síntoma más corriente en las hojas es la presencia en la parte apical de una mancha que parece como una quemadura, e incluso con alguna parte necrótica; en estas hojas es muy característica la existencia de una zona amarillenta, que suele haber entre la parte enferma y la de aspecto normal de la hoja.En ocasiones, además de algunas deformaciones, puede tener lugar una considerable caída de hojas, llegando aformarse lo que se conoce como “escobas de bruja”.Cuando la falta de boro no es muy acusada, la fructificación puede ser aparentemente normal, pero el fruto formado tiende a caer, especialmente en el verano. Otras pocas veces, algunos frutos llegan a madurar, pero suelen estar muydeformados, lo que da lugar a lo que se conoce como “cara de mono”.Cuando hay exceso de boro, se observan zonas necróticas en la parte apical de las hojas, no habiendo transición entre una parte y otra de la hoja. Los árboles fuertemente afectados por la toxicidad no producen flores.
Cobre Acortamiento de los entrenudos, pudiendo llegar a formar “rosetas”, acompañado a veces de una anómala ramificación
Hierro Síntomas muy claros de clorosis (clorosis férrica), más visible en las hojas jóvenes, que puede acentuarse y, en los casos extremos, producir necrosis en los bordes y ápices.
Manganeso Clorosis en las hojas con síntomas variables y a veces acompañada de necrosis.
Zinc La carencia de zinc produce la aparición de manchas amarillas en las hojas adultas y una detención del crecimiento delos brotes, con acortamiento de los entrenudos dando lugar a la formación de “rosetas”, parecidas a lo que ocurre con la falta de cobre.

Fuente: Faustino de Andrés Cantero (1997)

RECOMENDACIONES DE ABONADO

Dados los diversos escenarios en que se cultiva el olivar y los diferentes sistemas de  aplicación de los nutrientes, se van a indicar las recomendaciones en cada uno de ellos.

Olivar de secano. Aplicación al suelo

La variabilidad de las producciones en secano, es esencial a la hora de programar el abonado, que también depende de otras muchas variables ya comentadas. En base a todas ellas el agricultor puede optar por utilizar sólo abonos nitrogenados, (en zonas menos productivas, bien abastecidas de fósforo y potasio) o utilizar abonos complejos sólidos o líquidos.

El fósforo y el potasio pueden incorporarse en otoño, si se aplican por separado, o después de la recolección si se aportan junto al nitrógeno. Cuando se aplican los tres elementos juntos, mediante un abono complejo, o se aplican sólo abonos nitrogenados es preferible hacer la aplicación inmediatamente después de la recolección, para aprovechar todas las lluvias primaverales y posibilitar el paso de los nutrientes a la solución del suelo.

La forma tradicional de aplicar los fertilizantes al olivar de secano es aportarlos al suelo, cerca de las raíces absorbentes, que están distribuidas por medio de las calles del olivar en el horizonte superficial, que es el mejor aireado y el más rico en elementos nutritivos.

Si se aplican fertilizantes sólidos nitrogenados simples o complejos, lo normal es distribuirlos con abonadoras centrífugas, en superficie, por medio de las calles del olivar, y enterrarlos a continuación con una labor. Cuando se aplican fertilizantes líquidos neutros, éstos pueden distribuirse con maquinaria adaptada a las cubas que se usan para los tratamientos fitosanitarios. A modo de orientación, en la tabla siguiente se presenta una recomendación de abonado, para distintos niveles de producción esperada, con un NPK sólido con boro, que por su equilibrio nutritivo está adaptado al olivar.

Recomendación de abonado del olivo (kg/ha)
Producción aceituna (kg/ha) NPK 20-8-14-0,1 B
< de 1.500 150
1.500-3.000 300
3.000-4.500 400
4.500-6.000 500
> de 6.000 600

También se pueden aplicar otras fórmulas de NPK sólidos que igualmente se adaptan a las necesidades del olivo, como el 20-5-10 y otras con equilibrio similar.

Si se utilizan abonos complejos líquidos, más versátiles desde el punto de vista de su fabricación, las fórmulas que se pueden utilizar son muy variadas, adaptadas a cada explotación olivarera, siendo las mas usuales 9-3-11 y 6-2-10. En este caso, es frecuente utilizar dos fórmulas distintas a lo largo del ciclo del cultivo.

En el olivar de secano, también se utilizan fertilizantes sólidos compuestos de “mezcla”, que
permiten la aplicación de fórmulas específicas.

Olivar de riego. Fertirrigación en riego por goteo.

Lo primero es definir el plan de abonado anual y la cantidad de nutrientes a aportar al olivar, teniendo en cuenta la producción estimada y las extracciones, ya que las reservas del suelo en este caso no se consideran. Las aportaciones de nutrientes por el agua también deben tenerse en cuenta. El análisis foliar del año anterior nos servirá para afinar los cálculos.

Las cantidades de nutrientes N, P2O5 y K2O a aportar mensualmente por olivo a lo largo  de la campaña de riegos no debe ser homogénea, dependiendo del momento del ciclo vegetativo en que se encuentren los árboles. El nitrógeno se debe aportar en mayor proporción en el periodo primavera-verano (marzo -julio), época en la que se produce una mayor demanda de este nutriente como consecuencia del gran crecimiento vegetativo y del cuajado y crecimiento inicial del fruto, recomendándose reducir su dosis a partir del mes de agosto, tras el  endurecimiento del hueso.

El fósforo se podrá aportar en cantidades mensuales prácticamente iguales a lo largo de la campaña, teniendo en cuenta el escaso movimiento del fósforo en el bulbo, lo que hace pensar que se producirán mínimas pérdidas de este elemento por lixiviación, aunque sí bloqueos, lo que aconseja el fraccionamiento.

El potasio se aportará en mayor proporción a partir del endurecimiento del hueso hasta el
final de verano y especialmente durante el otoño, para así poder atender la gran demanda
que supone la extracción de este nutriente por los frutos en esta época del año (efecto sumidero), demanda que puede dejar desabastecido el árbol a final del ciclo (necrosis en hojas y defoliación), que afectará al desarrollo vegetativo y productivo en la campaña siguiente, haciendo al árbol más sensible a ciertas enfermedades (repilo y vivillo).

En la tabla siguiente se indican los porcentajes mensuales de reparto de la dosis anual de nutrientes.

Aportaciones mensuales de nutrientes en fertirrigación (%)
Mes N P2O5 K2O
Marzo 4,5 4 2
Abril 4,5 4 2
Mayo 22 17 10
Junio 22 17 10
Julio 21 17 21
Agosto 11 17 22
Septiembre 10 17 22
Octubre 5 7 11

Fuente: P. Ramos (2009)

En olivar de riego se aconseja lo siguiente:
• Abonar siempre que se riega (incluso si está lloviendo). No dejar intervalos de tiempo de riego sin fertirrigar. Sólo en casos de problemas de salinidad, habrá que tener en cuenta
una fracción de lavado al final del riego donde no se aportarán fertilizantes.
• No cambiar nunca los goteros de sitio.
• Abonar siempre que sea posible con soluciones ácidas. El pH a la salida del gotero debe estar en torno a 6,5. Es preferible siempre los riegos de alta frecuencia, es decir, mayor número de riegos para una misma cantidad de agua. En cuanto a los fertilizantes que se utilizan, por su facilidad de manejo, se están imponiendo los abonos líquidos: soluciones nitrogenadas y NPK cuyo equilibrio nutritivo se adapte a las necesidades del cultivo en cada momento y abonos que aporten elementos secundarios y microelementos si el cultivo los precisa.

Aportación de abonos vía foliar

El olivo responde bien a las aportaciones de nitrógeno, potasio y microelementos (excepto el hierro) por vía foliar, que pueden realizarse aprovechando tratamientos de productos fitosanitarios y que están especialmente indicadas en tiempo seco.

La absorción foliar de los nutrientes se favorece si la temperatura ambiental es suave, si la humedad ambiente es elevada y si el olivo tiene una proporción importante de hojas jóvenes, lo que sucede de abril a julio. La utilización de agentes mojantes favorece la adhesión del producto a las hojas y facilita su absorción.

Cuando se realicen aplicaciones foliares de nitrógeno y potasio, hay que considerar que son
complementarias del abonado practicado al suelo o por fertirrigación y tenerlas en cuenta para descontarlas.

El olivo tiene una hoja que admite muy bien el abonado foliar; por tanto, en secano y siempre que sea posible, se recomienda aportar los fertilizantes vía foliar.

Para la aportación de nitrógeno se puede utilizar urea cristalina, con un contenido en biuret inferior al 0,25%. Aunque se han hecho aplicaciones con concentraciones de hasta un 5% sin producirse fitotoxicidad, es preferible rebajar la concentración hasta la mitad y hacer dos aplicaciones al 2,5%. La aplicación debe hacerse en primavera. Respecto al potasio, cuando se aplica nitrato potásico las concentraciones oscilan entre 1,25% y 2,5% y preferiblemente debe utilizarse en el otoño.

Abonado en olivo para Producción Integrada (PI).

La PI en el cultivo del olivar ha ido creciendo hasta abarcar, en el año 2008, 194.000 ha (un 40% de la superficie total nacional). Las explotaciones que utilicen técnicas de PI en el
cultivo del olivar deberán cumplir distintas normas, de las que resumimos las más importantes en cuanto al abonado.

Es obligatorio realizar la fertilización mineral teniendo en cuenta extracciones, fertilidad del suelo y estado nutricional de la planta. Anualmente se realizarán análisis foliares y cada 4 años de suelos. Se debe cumplir la normativa vigente para la protección de las aguas a la contaminación de nitratos. Está prohibido superar en secano 70 kg N/ha en olivar tradicional y 100 kg N/ha en olivar intensivo. En riego superar 120 y 150 kg N/ha respectivamente. También aplicar los fertilizantes en diciembre y enero sobre suelo desnudo.

Producción integrada en Olivo

Ejemplo de abonado en olivo proporcionado por el siam

Abonado olivo 01 Abonado olivo 02

 

NOTAS ESPECIFICAS
Uso de Sulfato Potásico sólo a partir de Septiembre
En este cultivo y en las zonas vulnerables a la contaminación por nitratos definidas por Orden de 20 de Diciembre de 2001 (B.O.R.M:.nº 301, de 31 de Diciembre de 2001) las dosis de nitrogeno empleadas deben limitarse a las indicadas en el anexo IV de la Orden de 3 de Diciembre de 2003 (B.O.R.M. nº 286, de 12 de Diciembre de 2003) por el que se aprueba el Código de Buenas Prácticas Agrarias de la Región de Murcia.
NOTAS GENERALES:
Estas recomendaciones orientativas de abonado se adaptan a las Normas Técnicas de Producción Integrada de la Región de Murcia.
Procurar no combinar en el mismo riego Nitrato Cálcico con ningún otro fertilizante.
Procurar no combinar en el mismo riego Nitrato Amónico + Acido Fosfórico.
Procurar no mezclar en el mismo riego Quelato de Hierro con Acido Fosfórico.

 

Estados fenologicos del Olivo

Estados fenologicos del Olivo, olea europaea

Introducción:
La escala extendida BBCH es un sistema para una codificación uniforme de identificación fenológica de estadios de crecimiento para todas las especies de plantas mono – y dicotiledóneas.

Es el resultado de un grupo de trabajo conformado por el Centro Federal de Investigaciones Biológicas para Agricultura y Silvicultura (BBA) de la República Federal Alemana, el Instituto Federal de Variedades (BSA) de la República Federal de Alemania, la
Asociación Alemana de Agroquímicos (IVA) y el Instituto para Horticultura y Floricultura en Grossbeeren/ Erfurt, Alemania (IGZ).

El código decimal, se divide principalmente entre los estadios de crecimiento principales y secundarios y está basado en el bien conocido código desarrollado por ZADOKS et al. (1974) con la intención de darle un mayor uso a las claves fenológicas.