Abonado en Girasol Colza y Soja

Abonado en Girasol Colza y Soja

ABONADO DEL GIRASOL

NECESIDADES NUTRICIONALES

Papel de los nutrientes y micronutrientes Conseguir un buen desarrollo del cultivo y una producción abundante de pipas con elevado contenido de aceite, a su vez de buena calidad, no es posible sin una buena alimentación mineral de la planta.

En el caso del girasol se puede destacar: El nitrógeno es necesario para un buen desarrollo vegetativo de la planta y es indispensable para la formación de las cabezuelas y el llenado de los aquenios. Sin embargo, el exceso de nitrógeno provoca un desarrollo excesivo de la vegetación (menor índice de cosecha) y retraso de la maduración.

El fósforo favorece el cuajado de los frutos y estimula su maduración.

El potasio, en equilibrio con el nitrógeno y el fósforo, favorece la actividad fotosintética influyendo notablemente en el rendimiento y en el contenido de grasa.

El azufre es un elemento esencial para la formación de la coenzima A, básica para la  formación de los triterpenos, ergosterol, lanosterol, cimosterol, etc. Por esta razón, las  plantas oleaginosas, medicinales, aromáticas, resinosas, laticíferas, etc., responden  particularmente bien a la presencia de azufre asimilable en el suelo (Urbano, 2002). Entre  los microelementos, el girasol es un cultivo exigente en boro, del que absorbe más de 400  g/ha (CETIOM, 2008a). Este elemento interviene en la biosíntesis de la lignina y de las sustancias pécticas. Necesidades y absorción de nutrientes a lo largo del ciclo del cultivo. Las cantidades absorbidas por el cultivo dependen de la presencia y dinámica de los nutrientes, en forma asimilable, en el suelo y del rendimiento de las cosechas. En el girasol, el producto comercial corresponde a pipas con el 9% de humedad (9º), 2% de impurezas y 44% de grasa. Las necesidades de nutrientes para formar las cosechas, incluidas los restantes órganos de la planta en suelos de fertilidad media (Urbano, 2006), son del siguiente orden expresadas en kg de nutriente por 1.000 kg de pipa comercial:

30-40 kg N; 15-20 kg P2O5; 30-40 kg K2O

Debido a la actuación de los restantes factores edafoclimáticos, no es posible establecer una relación unívoca entre absorción de los nutrientes y cosecha obtenida. Por esta razón, con las cifras anteriores se propone una horquilla para utilizar la cifra menor (mayor eficiencia de los nutrientes) en suelos fértiles y años de climatología favorable y la cifra mayor (peor eficiencia del nutriente), en suelos mediocres y difíciles condiciones climáticas. Entre ellas, se pueden interpolar condiciones intermedias.

Deficiencias nutritivas

Aparte de las generales comunes para todos los macronutrientes, quizás las deficiencias nutritivas más significativas para el girasol son las que se producen por falta de boro. La  carencia de este elemento produce deformaciones y presencia de manchas pardo rojizas en las hojas que llegan a necrosarse y aparición de grietas en los tallos que provocan, en casos severos, la caída de las cabezuelas. En casos menos severos, pueden producirse fallos en el  cuajado de los frutos que rellenan irregularmente las cabezuelas con descensos importantes de los rendimientos.

RECOMENDACIONES DE ABONADO

Aunque en España, el girasol se fertiliza muy poco e, incluso, en muchos secanos no recibe ninguna fertilización, confiando en que su profundo sistema radicular capture buena parte  del nitrógeno residual de los fertilizantes aportados a cultivos anteriores (generalmente  cereal), es una planta que agradece el aporte de fertilizantes, respondiendo con buenos incrementos de cosecha, siempre que la humedad del suelo no actúe como factor limitante del rendimiento.

Cálculo de la dosis

Para el cálculo de la dosis deberá tenerse en cuenta el balance de cada uno de los nutrientes (entradas y salidas).

La diferencia entre las salidas y las entradas de nutrientes debe compensarse con los fertilizantes. Si se utilizan fertilizantes orgánicos en la rotación, habrá que restar el contenido de nutrientes que estos lleven, teniendo en cuenta el tiempo necesario para la mineralización del nitrógeno del fertilizante orgánico. Es frecuente, en agricultura de conservación y en agricultura integrada, recomendar dosis de abonado mediante formulaciones simplificadas que tienen en cuenta las partidas más importantes del balance (generalmente las exportaciones netas de la cosecha) y los aportes con los fertilizantes (minerales y orgánicos). Se trata de formulaciones aproximadas que se recomienda ajustar durante el desarrollo del cultivo, de acuerdo con la marcha de la climatología y su repercusión sobre la actividad biológica del suelo.

Épocas y momentos de aplicación

Para mejorar su eficiencia y reducir riesgos medioambientales, no conviene aplicar todo el nitrógeno en una sola vez, por lo que es recomendable, con fertilizantes convencionales,  aportar en presiembra una cantidad que suele variar entre el 30% y el 50% del nitrógeno  necesario, e incorporar el resto en cobertera. En cambio, puede aportarse todo el fósforo y el potasio en presiembra, con lo que, si se actúa así, las coberteras se harían sólo con nitrógeno. La dosis de presiembra puede aplicarse en el momento de la siembra si se utiliza una máquina sembradora-abonadora o una sembradora para siembra directa que también aporte el abono. Las coberteras pueden reducirse a una sola aplicación en los casos de bajos rendimientos o hacer dos aplicaciones para rendimientos más elevados. En estas situaciones, no conviene hacer aportes tardíos en cobertera para no retrasar la maduración de los aquenios. La primera cobertera se realizará en el estado de cinco pares de hojas (estado B10) y la segunda, en el caso en que se haga este segundo aporte, al inicio de la floración (estado F1: el botón floral se inclina y las flores liguladas son perpendiculares a la masa central del capítulo (CETIOM, 2008)).

Forma en que se aportan los elementos nutritivos (mineral/orgánica)
Si se aportan fertilizantes orgánicos (estiércoles, purines, RSU, lodos de depuradora, etc.) en algún momento de la rotación de cultivos, se restarán de las necesidades señaladas en la tabla 21.3.

los nutrientes que presumiblemente vayan a liberarse en el suelo durante los meses de cultivo del girasol, para lo que será necesario conocer la composición del fertilizante orgánico y el tiempo previsto para su mineralización. Si no se utilizan fertilizantes orgánicos, se aportarán las necesidades establecidas en la tabla 21.3 mediante fertilizantes minerales, simples o compuestos. En el caso del girasol, puede ser una buena norma aplicar en presiembra un complejo NPK, de equilibrio acorde con las necesidades, y con boro en  caso de carencia de este elemento, y en cobertera un fertilizante nitrogenado simple. Para este último, puede recomendarse urea, para uso general, nitrosulfato amónico para suelos calizos, salitrosos o deficientes en azufre, y en el caso de suelos neutros o ácidos, nitrato amónico cálcico.

Programas de fertilización

De acuerdo con las consideraciones anteriores, se proponen en la tabla 21.3, a modo  orientativo, diferentes programas de abonado mineral:

ABONADO DE LA COLZA

Como se observa en la tabla 21.1, la superficie de este cultivo en España ha ido descendiendo drásticamente hasta ocupar poco más de 5.000 ha en el año 2006 y, aunque hubo un repunte importante en el año 2007 por su utilización para la producción de biodiesel, de nuevo en el año 2008 ha habido una notable disminución de la superficie cultivada. Refiriéndonos al año 2007, el 73,7% se cultivó en secano y el 26,3%, en regadío. En relación con la superficie nacional cultivada en secano, destaca el cultivo en Castilla y León (28,9%), Cataluña (24,9%), Andalucía (16,2%), Castilla-La Mancha (13,7%) y Aragón (10,6%). Los rendimientos del secano en el año 2007 fueron de 1.498 kg/ha (medio) y 2.480 kg/ha (máximo), mientras que los del regadío alcanzaron los 2.482 kg/ha (medio) y 4.600 kg/ha (máximo). Las necesidades de nutrientes para formar las cosechas, incluidos los restantes órganos de la planta en suelos de fertilidad media (Urbano, 2006) son del siguiente orden, expresadas en kg de nutriente por 1.000 kg de grano comercial:

40-50 kg N; 25-30 kg P2O5; 35-40 kg K2O

PROGRAMAS DE FERTILIZACIÓN

Se proponen en la tabla 21.4, a modo orientativo, diferentes programas de abonado mineral, teniendo en cuenta que por su siembra otoñal, se está recomendando hacer las presiembras con poco nitrógeno.

ABONADO DE LA SOJA

La superficie de este cultivo en España (tabla 21.1) ha sido siempre muy pequeña.  Refiriéndonos al año 2007, no llegó a 350 ha, cultivándose el 95,3% en regadío y solamente el 4,7%, en secano. El cultivo en regadío se desarrolló principalmente en Extremadura (60,8%), Andalucía (17,5%), y Castilla y León (15%). Los rendimientos del regadío en el año 2007 fueron 2.738 kg/ha (medio) y 3.500 kg/ha (máximo). Los del secano fueron 1.400 kg/ha (medio) y 1.500 kg/ha (máximo). Las necesidades de nutrientes para formar las cosechas, incluidos los restantes órganos de la planta en suelos de fertilidad media (Urbano,
2006), son del siguiente orden, expresadas en kg de nutriente por 1.000 kg de grano comercial:

60-70 kg N; 16-20 kg P2O5; 30-40 kg K2O

Es necesario tener cuidado con los aportes de nitrógeno para favorecer la nitrofijación simbiótica con Rhizobium japonicum. Para ello, se aportará una pequeña cantidad de nitrógeno en presiembra y solamente si se observa falta de nódulos en las raíces, se ayudará con nitrógeno en cobertera.

PROGRAMAS DE FERTILIZACIÓN

Se proponen en la tabla 21.5, a modo orientativo, diferentes programas de abonado mineral.

Pedro Urbano Terrón Doctor Ingeniero Agrónomo
Catedrático de Producción Vegetal
Fitotecnia
ETSIA. Universidad Politécnica de Madrid

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.