Herbicidas en Olivo Vid Cerezo Ciruelo Manzano Peral Melocotonero Albaricoque

Herbicidas en Olivo Vid Cerezo Ciruelo Manzano Peral Melocotonero Albaricoque

Fuente Boletín de Avisos del Centro de Sanidad y Certificación Vegetal del Gobierno de Aragón

Los herbicidas utilizables pertenecen a tres grupos:

HERBICIDAS PERSISTENTES

Se aplican al suelo para ser absorbidos por las raíces o coleóptilos de las hierbas en germinación. Suelen permanecer largo tiempo en el suelo, necesitan humedad para su actuación y han de aplicarse con el suelo desnudo. ¡Cuidado con las dosis! Emplear las dosis mínimas recomendadas. Si se sobredosifica y siguen lluvias abundantes puede dañarse el cultivo y se puede provocar la contaminación de los acuíferos.
La aplicación de herbicidas persistentes o de su mezcla con foliares deberá hacerse, en su caso, cuando las plantas de cultivo tengan más de cuatro años.

Para utilizar en suelos que se encuentran LIMPIOS DE MALAS HIERBAS en el momento de la aplicación.
F: Frutales O: Olivo V: Vid

HERBICIDAS PERSISTENTES

HERBICIDAS FOLIARES

Han de ser aplicados sobre las partes verdes de las malas hierbas, pudiendo tener efecto sistémico (lento y penetrante) o de contacto (rápido y superficial) por lo que su aplicación deber ser dirigida sin mojar las partes verdes del cultivo. Deben ser empleados en invierno,
4-6 semanas antes de la floración, o como complemento a un tratamiento con herbicidas residuales en primavera o verano. No conviene tratar inmediatamente después de la poda de la vid.

Para utilizar en suelos que se encuentran CON MALAS HIERBAS en el momento de la aplicación.

HERBICIDAS FOLIARES

HERBICIDAS MEZCLAS DE FOLIARES Y PERSISTENTES

Reúnen las características de los dos grupos, por tanto, su aplicación debe ser dirigida contra las malas hierbas, necesitando humedad en el suelo. Su época de aplicación es al comienzo de la primavera. Comprobar si se puede aplicar o no sobre aceituna caída para recolectar.

Para utilizar en suelos que se encuentran CON MALAS HIERBAS en el momento de la aplicación.
F: Frutales O: Olivo V: Vid
IMPACTO AMBIENTAL: BAJO, MEDIO, ALTO

HERBICIDAS MEZCLAS DE FOLIARES Y PERSISTENTES

COMO REDUCIR EL RIESGO DE APARICIÓN DE RESISTENCIAS A LOS HERBICIDAS SEGÚN EL MODO DE ACCIÓN DE LOS MISMOS

En los cultivos leñosos existen poblaciones de coniza y vallico resistentes a glifosato en algunas zonas de España.
En los cuadros, los indicativos en letras que aparecen entre paréntesis en la columna de observaciones informan sobre el modo de acción del herbicida. Para reducir el riesgo de aparición de poblaciones resistentes se recomienda evitar el uso continuado del mismo herbicida o de herbicidas que tengan el mismo modo de acción (por ejemplo: orizalina y pendimetalina, ciclodim y cletodim, etc.), por lo que no se aconseja tratar más de 2 años seguidos con herbicidas que respondan al mismo indicativo, especialmente con los grupos que tienen más riesgo de producir resistencias, y alternar con métodos no químicos (labores, siegas, etc.). Insistimos en la necesidad de extremar las precauciones para evitar la aparición de resistencias.

VN:F [1.9.22_1171]
Califica la calidad del articulo 1-5 GRACIAS
Rating: 3.3/5 (3 votes cast)
VN:F [1.9.22_1171]
Rating: +3 (from 3 votes)

Abonado en frutales de hueso y pepita

Abonado en frutales de hueso y pepita

José Luis Espada Carbó
Ingeniero Técnico Agrícola
Centro de Transferencia Agroalimentaria
Departamento de Agricultura y Alimentación
Gobierno de Aragón

ITINERARIO DE LA FERTILIZACIÓN

Para establecer un plan de fertilización, en primer lugar necesitamos conocer las  necesidades de los árboles, luego las de la plantación y finalmente, con los datos anteriores más los correspondientes al suelo y al agua de riego, estaremos en condiciones de calcular las necesidades totales de fertilizantes, que conforman el plan de fertilización.

• Necesidades de los árboles: las necesidades de los árboles son la suma de las exportaciones netas del cultivo (frutos), más las exportaciones de las hojas y madera de poda, y las cantidades inmovilizadas en los órganos de reserva de los árboles.
• Necesidades de la plantación: corresponden a la suma de las necesidades de los árboles, las de la hierba de cobertura de la parcela y las correspondientes a las pérdidas de algunos elementos por lixiviación, volatilización, reorganización, desnitrificación y fijación por el suelo.
• Necesidades totales de fertilizantes (Plan de fertilización): serán la suma de necesidades
de la plantación, menos las aportaciones del suelo y del agua de riego.

NECESIDADES DE FERTILIZANTES

Para facilitar el cálculo de las necesidades, realizamos en primer lugar las correspondientes al fósforo y potasio, efectuando en último lugar las del nitrógeno.

Fósforo y Potasio

• Fase de pre-plantación. En suelos con niveles de fósforo y potasio bajos, se deberán aportar como máximo, en la preparación del suelo y antes de plantar, las siguientes cantidades:
– 50 kg P2O5/ha.
– 350 kg K2O/ha.

• Fase de árboles en formación. Las aportaciones máximas que se deben aplicar en esta fase son:
– Año 1º: 10 kg P2O5/ha y 20 kg K2O/ha.
– Año 2º: 15 kg P2O5/ha y 40 kg K2O/ha.

En caso de que se prolongue la fase de formación de los árboles, las dosis del año segundo no deben ser superadas.

• Fase de árboles en producción. El abonado de los árboles en esta fase debe ser definido sobre la base de los valores indicados en la tabla 25.4.

En cualquier caso, las cantidades anuales aportadas al cultivo de estos nutrientes no deben sobrepasar los límites que se indican en la tabla 25.5.

Ejemplo:
Calcular las necesidades de fósforo y potasio para fertilizar una hectárea de melocotoneros adultos con 25.000 kg/ha de producción. El suelo del cultivo es franco y tiene un contenido medio en fósforo y potasio.
Solución:
• Exportaciones de los árboles adultos (tabla 25.4):
– 25 x 1,71 = 42,7 kg P2O5/ha
– 25 x 3,84 = 96,0 kg K2O/ha
• Como los resultados del análisis de suelo indican que los niveles de ambos elementos son medios (tabla 25.5), solo consideramos las exportaciones anteriormente reseñadas como necesidades de fósforo y potasio.

Nitrógeno

El cálculo de la cantidad de nitrógeno (N) que se debe aportar al suelo se obtiene de la realización de un balance entre las cantidades exportadas por el cultivo, más la hierba de cobertura del suelo y las aportadas por el suelo y el agua de riego.

Exportaciones o salidas de nitrógeno
• Necesidades de árboles jóvenes. En árboles en periodo de formación las exportaciones son las que figuran en la tabla 25.6.

Necesidades de árboles adultos.

Las exportaciones  netas, expresadas en kg N/t de fruto producido, engloban las necesidades para la producción de frutos y el crecimiento de hojas, ramas, tronco y raíces (tabla 25.7).

• Necesidades de la hierba de cobertura del suelo (pradera). Los dos primeros años de  establecimiento de la cubierta hay que incorporar anualmente al suelo las siguientes cantidades de nitrógeno:

– Pradera polífita (<10% leguminosas): 45 kg N/ha.
– Pradera polífita (10-20% leguminosas): 35 kg N/ha.
– Pradera polífita (>20% leguminosas): 25 kg N/ha.

A partir del 2º año, en la mayor parte de las coberturas con especies propias de la parcela, las exportaciones netas oscilan entre 30-35 kg N/ha y año.

Aportaciones o entradas de nitrógeno

• Aportaciones del suelo. La mineralización del nitrógeno orgánico del suelo (incluyendo residuos vegetales y abonos orgánicos) depende para una determinada plantación, principalmente, de los residuos del cultivo (madera de poda, hojas) y de la textura del suelo.

• Aportaciones de nitrógeno por el agua de riego.
Las aportaciones dependen del contenido de nitrógeno en el agua utilizada a lo largo del periodo de riego del cultivo.

 Actualmente hay medidores portátiles, relativamente económicos, que permiten  determinar fácilmente el contenido de nitratos en el agua de riego.

Ejemplo de cálculo de necesidades de nitrógeno del cultivo:
Calcular las necesidades de nitrógeno por hectárea, para una plantación de melocotoneros de 8 años de edad, cultivados en un suelo franco con un 1,5% de materia orgánica.
El suelo, desde hace 4 años, se mantiene desnudo en la zona sombreada por las copas y con hierba que se tritura en el centro de las calles. La producción prevista es de 25.000 kg/ha y los consumos de agua de riego, con un contenido medio de nitratos de 5 mg/l, se estiman en 6.000 m3/ha y año.

Solución:

A – Salidas de Nitrógeno  (kg N/ha)
– Extracciones de los árboles (tabla 25.7): 25 x 3,48  87,0
– Extracción de la hierba para cobertura del suelo 35,0
– Total salidas 122,0
B – Entradas de Nitrógeno  (kg N/ha):
– Aportación MO del suelo (tabla 3.1) 33,0
– Aportación agua de riego (tabla 2.1)  6,8
– Total entradas 39,8
C Balance (A – B):  82,2 kg N/ha.

Necesidades totales de fertilizantes por especies

En la tabla 25.8 se indica el abonado medio recomendado para las distintas especies de fruta dulce y el almendro, calculado en condiciones iguales a las del melocotonero de los ejemplos anteriores.

25_8

ÉPOCAS PARA APLICAR LOS FERTILIZANTES

En lo que concierne al nitrógeno, se ha establecido un consenso en los siguientes puntos:
• Las necesidades cruciales para la floración son cuantitativamente modestas, y pueden  mayoritariamente ser cubiertas por las reservas del árbol (ciclo interno del nitrógeno).
• A partir de la fase floración-cuajado, las necesidades crecen regularmente con y para el desarrollo de brotes y frutos.
• Después de la parada del crecimiento significativo de brotes (mediados de julio-final) las necesidades se estacionan y bajan después de la recolección.
• Al final de la estación vegetativa y notablemente después de la recolección, las necesidades de nitrógeno almacenadas bajo forma orgánica en los órganos de reserva del árbol (raíz, tronco, ramas), se deben satisfacer por las razones expresadas en el primer punto.

En la tabla 25.9 se especifica la distribución de las necesidades totales de nutrientes del cultivo en cada fase o período de desarrollo.

25_9

En riego localizado, la aplicación conjunta del agua de riego y los nutrientes (fertirrigación), permite fraccionar la cantidad total de nutrientes en 150-200 aportaciones durante la campaña.

PRÁCTICA DE LA FERTILIZACIÓN

Una vez que se conocen mejor las cantidades y el calendario de las aportaciones de nutrientes, hace falta saber en qué lugar conviene aplicarlos, bajo qué forma y con qué tipo de fertilizantes.
En plantaciones jóvenes, la hierba de cobertura tiene necesidades importantes, mientras que en los árboles son menores. La localización de distintas dosis de abonos en bandas específicas, es entonces muy eficaz. En el caso de riegos localizados, es posible aplicar periódicamente los abonos a través del agua de riego, lo que permite posicionarlos mejor a lo largo de toda la zona del suelo explorada por las raíces.

Los tipos de abonos con los que se aportan los nutrientes deben estar en función del equipo de distribución, tipo de riego y del clima. Especiales precauciones deben tenerse en cuenta en la utilización de los fertilizantes nitrogenados, para evitar al máximo las posibles pérdidas que pudieran ocasionarse.

VIGILANCIA DEL ESTADO NUTRICIONAL DE LOS ÁRBOLES

Durante la vida de la plantación es deseable evaluar periódicamente los niveles de elementos minerales en el suelo y en el árbol. La regularidad del control facilita la puesta al día de tendencias. Éstas, muestran al fruticultor el efecto en el tiempo de las prácticas  culturales, más allá de la simple acción de regar o fertilizar.

Análisis de suelo
Se realizará por un laboratorio especializado sobre una muestra representativa de la parcela.
La periodicidad y los componentes a determinar serán:
• Cada 3-5 años: textura, capacidad de intercambio catiónico (CIC), pH, materia orgánica,
carbonato cálcico.
• Cada año: conductividad, nitrógeno, fósforo, potasio, calcio y magnesio.

Análisis de material vegetal (hojas)
Para las distintas especies de frutales, se utiliza el análisis mineral de hojas como elemento de diagnóstico y control. Para obtener referencias fiables de un año para otro, tanto el tipo de ramo, hoja y su situación, el número de árboles muestreados y la fecha de toma de muestras, deben ser escrupulosamente respetados (tabla 25.10).

Como este tipo de análisis hay que realizarlo en una fase avanzada del crecimiento de ramos y frutos, los resultados únicamente son aplicables para corrección de las aportaciones finales y del abonado global del año siguiente.
En función de los resultados de los análisis de muestras de hojas, y para aplicar las oportunas correcciones sobre las cantidades de cada elemento mineral aportado el año anterior, se pueden utilizar como referencia los niveles adecuados de elementos minerales en hoja que para las distintas especies figuran en la tabla 25.11.

No obstante, lo ideal sería disponer de tablas específicas para las distintas variedades de cada área de producción y utilizar algún método que permita calcular, de forma sencilla, las correcciones de nutrientes que debemos aportar en el siguiente plan de fertilización.

Para descargarse la guía completa

http://www.magrama.gob.es/es/agricultura/publicaciones/02_FERTILIZACI%C3%93N(BAJA)_tcm7-207770.pdf

VN:F [1.9.22_1171]
Califica la calidad del articulo 1-5 GRACIAS
Rating: 4.4/5 (31 votes cast)
VN:F [1.9.22_1171]
Rating: +21 (from 27 votes)

Antracnosis en cerezo

Antracnosis en cerezo o cilindrosporiosis

Mª Teresa García Becedas. Vida Rural

Enfermedad ocasionada por el hongo Blumeriella jaapii (Rehm v. Arx), que en nuestra zona se conoce como antracnosis, aunque en otras se emplea más el término cilindrosporiosis.
Para el periodo 1987-1997 los daños fueron localizados, centrándose en parcelas de humedad relativa alta por su proximidad a cauces de agua (río, gargantas, arroyos, etc.).


El primer ataque generalizado se observó a finales de julio de 1997, y a partir de entonces se ha registrado un notable incremento posiblemente por la introducción de variedades foráneas más sensibles que las autóctonas.
En nuestras condiciones, los principales daños se manifiestan en las hojas y el pedúnculo del fruto. En la hoja se observan numerosas manchas diminutas de aspecto moradorojizo por el haz y pardo por el envés, aunque luego éstas se vuelvan blancuzcas al fructificar (“moco”). Estas manchas no se criban, pero las hojas atacadas amarillean y caen prematuramente, comprometiendo la acumulación de reservas, el crecimiento y vigor del árbol e incrementando la sensibilidad a las heladas. Los frutos cuyos pedúnculos se vieron afectados, suelen mostrar una calidad deficiente: escaso calibre, maduración irregular y sabor insípido. Los síntomas suelen ser visibles en unos cinco días si las temperaturas son muy favorables (16- 19ºC) o después (10-15 días) si éstas son inferiores y la humedad relativa es baja.


Su inóculo pasa el invierno sobre los órganos atacados de campañas anteriores. En primavera, las ascosporas transportadas por el agua y el viento infestan hojas y frutos. La época de contaminaciones abarca los periodos lluviosos desde su formación hasta bastante después de la caída de los pétalos, provocando estas esporas las infecciones primarias. Las infecciones secundarias, producidas por las reinfecciones de las conidias, provocan nuevos daños durante todo el verano, siendo éstos al final del mismo mucho más altos que en primavera.
Su frecuencia de ataque en hoja es alta (85%1) pero en general la severidad es baja, aunque a veces el ataque es considerable (14%2). En fruto, la frecuencia es considerable (35%3), aunque los ataques que se registran suelen ser poco intensos (61%4).

Los riesgos se incrementan en las:
• Primaveras lluviosas5, precedidas de otoños inviernos lluviosos y templados.
• Zonas cálidas próximas a cauces de agua (río, arroyos, gargantas, etc.).
• Parcelas con alta densidad de plantación y poco aireadas.
• Variedades sensibles como Lapins, Sunburst, Burlat, Van, 4-70, Navalinda, Ambrunés, etc.
• Cerezos en formación, porque las hojas jóvenes son más receptivas.
• Parcelas de regadío cuando no se controlan bien las infecciones primarias.

VN:F [1.9.22_1171]
Califica la calidad del articulo 1-5 GRACIAS
Rating: 4.0/5 (1 vote cast)
VN:F [1.9.22_1171]
Rating: -2 (from 2 votes)

Monilia o Moniliosis en Cereza

Monilia o Moniliosis en Cereza

Moniliosis en Cereza – Pudrición Parda (brown rot).

Causada por Monilinia fructicola, esta enfermedad puede iniciarse en la huerta o después de la cosecha, por lo que son necesarias medidas de control en pre y postcosecha.

Monilia laxa es la enfermedad más destructiva de la fruta de hueso en Europa. En las cerezas es la enfermedad con el mayor impacto económico.

Agente causal.

Monilinia laxa y Monilinia fructigena (anamorfo Monilia)

Nombres comunes.

Monilia, Moniliosis, “Grumo seco”, Podredumbre, Momificado.

Descripción.

Ambas especies son muy similares, pero M. Laxa parasita

generalmente a flores y frutos mientras que M. Fructigena afecta sólo a frutos. Atacan tanto a frutal de hueso como al de pepita. En el cerezo existe una marcada sensibilidad varietal, destacando entre las más sensibles: Van, Early Van Compact,Summit y Lapins.

Biología.

El hongo pasa el invierno sobre la fruta o flores momificadas. En primavera, las esporas penetran por el pistilo y alcanzan el ovario, lo que provoca el marchitamiento de la flor. Posteriormente, la necrosis se extiende al ramillete de mayo y de aquí, al resto de la rama. Las infecciones de los frutos se originan a partir de las conidias producidas por las primeras contaminaciones sobre las flores.

Síntomas y daños.

En las flores y ramilletes de mayo pueden originar su ennegrecimiento y secado, permaneciendo unidos al árbol por las exudaciones de goma (resina) que producen las zonas afectadas.

En la fruta, los síntomas provocados por estos hongos son podredumbres, que se manifiestan con mayor intensidad en los frutos con lesiones (granizo, rajado,…).

Medidas de control.

Prácticas culturales: en aquellas zonas con riesgos elevados de padecer esta enfermedad, se evitará el cultivo de variedades sensibles y se seguirán las siguientes prácticas:

  • destruir las partes del árbol afectadas (momias);
  • airear las copas de los árboles a través de las podas;
  • restringir el abonado nitrogenado;
  • aumentar ligeramente las dosis de fósforo y potasio.

Control químico:

los tratamientos curativos no resultan eficaces. Se recomienda realizar tratamientos otoño-invernales para disminuir la cantidad de inóculo, y tratamientos preventivos para proteger el periodo de vegetación.

Formulación: AZUFRE 80% + CIPROCONAZOL 0,8% [WG] P/P
Dósis Mínima: 0,1 Dósis Máxima: 0,2 Unidades: % Plazo de seguridad: 14
Nº registro
Nombre comercial
Titular
18568
BIALLOR-S
SYNGENTA AGRO, S.A.
 
 
 
Formulación: CAPTAN 47,5% [SC] P/V
 
Dósis Mínima: 0,25 Dósis Máxima: 0,3 Unidades: % Plazo de seguridad: 10
Nº registro
Nombre comercial
Titular
23943
MERPAN 47,5 SC
MAKHTESHIM AGAN ESPAÑA, S.A.
18188
AGROCAPT FLOW
MAKHTESHIM AGAN ESPAÑA, S.A.
17290
CLOROCARB-L
SIPCAM INAGRA, S.A.
 
 
 
Formulación: CAPTAN 50% [WP] P/P
 
Dósis Mínima: 0,25 Dósis Máxima: 0,3 Unidades: % Plazo de seguridad: NP
Nº registro
Nombre comercial
Titular
21820
MYTU 50
ARYSTA LIFESCIENCE ESPAÑA, S.A.
15996
ORTHOCIDE
ARYSTA LIFESCIENCE ESPAÑA, S.A.
12180
CAPTERAN 50
ARAGONESAS AGRO, S.A.
13146
BELPRON C-50
PROBELTE, S.A.
13188
MERPAN 50
ARAGONESAS AGRO, S.A.
11780
ORTHOCIDE 50 WETTABLE
ARYSTA LIFESCIENCE ESPAÑA, S.A.
14113
CAPTAZEL
ARYSTA LIFESCIENCE ESPAÑA, S.A.
11837
CAPTAGREX-50
ARYSTA LIFESCIENCE ESPAÑA, S.A.
14904
CAPTANIL 50
ARYSTA LIFESCIENCE ESPAÑA, S.A.
 
 
 
Formulación: CAPTAN 80% [WG] P/P
 
Dósis Mínima: 0,15 Dósis Máxima: 0,25 Unidades: Plazo de seguridad: 10
Nº registro
Nombre comercial
Titular
19995
MERPAN 80 WDG
MAKHTESHIM AGAN ESPAÑA, S.A.
 
 
 
Formulación: CIPROCONAZOL 10% [WG] P/P
Dósis Mínima: 0,01 Dósis Máxima: 0,02 Unidades: % Plazo de seguridad: NP
Nº registro
Nombre comercial
Titular
18736
CADDY 10 PEPITE
BAYER CROPSCIENCE, S.L.
24900
ATEMI 10 WG
SYNGENTA AGRO, S.A.
 
 
 
Formulación: CIPROCONAZOL 5% [EC] P/V
Dósis Mínima: 0,02 Dósis Máxima: 0,035 Unidades: % Plazo de seguridad: 14
Nº registro
Nombre comercial
Titular
18424
ATEMI 5 LS
SYNGENTA AGRO, S.A.
 
 
 
Formulación: CIPRODINIL 37,5% + FLUDIOXONIL 25% [WG] P/P
Dósis Mínima: 60 Dósis Máxima: 100 Unidades: g/Hl Plazo de seguridad: 3
Nº registro
Nombre comercial
Titular
21714
SWITCH
SYNGENTA AGRO, S.A.
 
 
 
Formulación: DIFENOCONAZOL 25% [EC] P/V
Dósis Mínima: 0,06 Dósis Máxima: 0 Unidades: % Plazo de seguridad: 30
Nº registro
Nombre comercial
Titular
24410
CEREMONIA 25 EC
GLOBACHEM NV
24880
CORE
SHARDA EUROPE B.V.B.A.
24125
NOBLE
GLOBACHEM NV
24561
TAYIKO
GLOBACHEM NV
24636
NOMADA
GLOBACHEM NV
18766
LEXOR-25
SYNGENTA AGRO, S.A.
18767
SCORE 25 EC
SYNGENTA AGRO, S.A.
 
 
 
Formulación: FENHEXAMIDA 50% [WG] P/P
 
Dósis Mínima: 0,15 Dósis Máxima: 0 Unidades: Plazo de seguridad: 3
Nº registro
Nombre comercial
Titular
22130
TELDOR
BAYER CROPSCIENCE, S.L.
 
 
 
Formulación: FOLPET 10% + OXICLORURO DE COBRE 11,2% (EXPR. EN CU) + SULFATO CUPROCALCICO 10,4% (EXPR. EN CU) [WP] P/P
Dósis Mínima: 0,25 Dósis Máxima: 0,35 Unidades: % Plazo de seguridad: NP
Nº registro
Nombre comercial
Titular
18725
COVIFET F
SAPEC AGRO S.A.U.
 
 
 
Formulación: HIDROXIDO CUPRICO 35% (EXPR. EN CU) [WG] P/P
Dósis Mínima: 0,2 Dósis Máxima: 0,3 Unidades: Plazo de seguridad: 15
Nº registro
Nombre comercial
Titular
22002
KDOS
DU PONT IBERICA, S.L.
 
 
 
Formulación: HIDROXIDO CUPRICO 36% (EXPR. EN CU) [SC] P/V
Dósis Mínima: 0,2 Dósis Máxima: 0,35 Unidades: % Plazo de seguridad: 3
Nº registro
Nombre comercial
Titular
22742
CHAMPION FLOW
NUFARM ESPAÑA, S.A.
23190
CHAMP SC
NUFARM ESPAÑA, S.A.
24677
HIDROCU 36 FLOW
ALINTRA, S.A.
22433
VITRA FLOW
IQV AGRO ESPAÑA, S.L.

 

El primer gráfico que muestra los resultados del modelo indica una ligera infección en el 05 de abril. Este sería el inicio de la floración de la cereza. Esta infección puede ya dar lugar a infecciones latentes de la fruta y causar graves daños. Floraciones fuera de plazo serán completamente destruidas por infecciones del 13 de abril indicadas por el segundo gráfico. En el tercer gráfico muestran infecciones en fruta madura a final de Mayo.

Image

Image

 

Image
Image
Image
VN:F [1.9.22_1171]
Califica la calidad del articulo 1-5 GRACIAS
Rating: 3.5/5 (2 votes cast)
VN:F [1.9.22_1171]
Rating: +1 (from 3 votes)

Estados fenologicos del cerezo

La fenologia de una planta nos cualifica sus estados de desarrollo, de este modo a continuación podrán observar los estados fenologicos del cerezo.

Estos vienen determinados por letras  de la «A» a la «K», de tal modo que si decimos que no es recomendable realizar un tratamiento hasta que la planta no alcance el estado «E», estaremos diciendo que hasta que no se vean los estambres, no recomendamos realizar un tratamiento.

  • A) Yema de invierno – Dormant
  • B) Yema hinchada -Green Tip
  • C) Boton verde – Tight Cluster
  • D) Boton Blanco – Open Claster – First white
  • E) Se ven los estambres – First bloom
  • F) Flor abierta – Full blom
  • G) Caida de petalos – Peter fall
  • H) Cuajado – Fruit set
  • I) El Caliz se cae – Calyx fall
  • J) Fruto tierno -Tender fruit
  • K) Fruto maduro – Mature fruit
Tabla 1. Temperaturas críticas de muerte del fruto
A B C D E
10% -8,3 -5,5 -3,8 -3,3 -2,7
90% -15 -1,7 -10 -8,3 -6,1
Tabla 1. Temperaturas críticas de muerte del fruto
F G H I J
10% -2,7 -2,2 -2,2 -2,2 -2,2
90% -4,4 -3,8 -3,8 -3,8 -3,8

 

A) Yema de invierno – Dormant

B) Yema hinchada -Green Tip

C) Boton verde – Tight Cluster

D) Boton Blanco – Open Claster – First white

E) Se ven los estambres – First bloom

F) Flor abierta – Full blom

G) Caida de petalos – Peter fall


H) Cuajado – Fruit set


I) El Caliz se cae – Calyx fall

J) Fruto tierno -Tender fruit


K) Fruto maduro – Mature fruit

VN:F [1.9.22_1171]
Califica la calidad del articulo 1-5 GRACIAS
Rating: 4.6/5 (9 votes cast)
VN:F [1.9.22_1171]
Rating: +5 (from 7 votes)